IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v169y2023ics0960077923002217.html
   My bibliography  Save this article

The influence of environment-based autonomous mobility on the evolution of cooperation

Author

Listed:
  • Yang, Yixin
  • Pan, Qiuhui
  • He, Mingfeng

Abstract

Migration is an important feature of natural society. In real life, people will judge whether to migrate according to their satisfaction with the environment. This paper assumes that for a defector, when the number of cooperators in his neighbor fails to meet his expectation, he will choose to migrate, and for a cooperator, when the number of defectors in his neighbor exceeds his tolerance, he will choose to migrate. Results show that when the defectors have high requirements on the environment and are easy to move, if the cooperators have no requirements on the environment and do not move, for any population density, the system will eventually be all cooperators; if the cooperators choose to migrate when their neighbors are full of defectors, the system will eventually be all cooperators at the low population density, and with the increase of population density, the proportion of cooperation will decrease, showing a state of coexistence of cooperation and defection. However, when the defectors have no requirements on the environment and do not move, the cooperators have high requirements on the environment that move as long as there are defectors in their neighbors, for all population densities, cooperation and defection always coexist in the system, and there exists a population density, which maximizes the proportion of cooperation. That is to say, when cooperators and defectors one have high environmental requirements and the other have low requirements, it is conducive to cooperation.

Suggested Citation

  • Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923002217
    DOI: 10.1016/j.chaos.2023.113320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923002217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Hai & Yang, Dong-Ping & Shuai, J.W., 2011. "Cooperation among mobile individuals with payoff expectations in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 153-159.
    2. Wang, Zhen & Chen, Tianyi & Wang, Xingpu & Jin, Jiuwu & Li, Mingchu, 2013. "Evolution of co-operation among mobile agents with different influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4655-4662.
    3. Wang, Xiaofeng & Perc, Matjaž, 2021. "Emergence of cooperation in spatial social dilemmas with expulsion," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    4. Li, Bing & Zhao, Xiaowei & Xia, Haoxiang, 2019. "Promotion of cooperation by Hybrid Migration mechanisms in the Spatial Prisoner’s Dilemma Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 1-8.
    5. Rui Cong & Bin Wu & Yuanying Qiu & Long Wang, 2012. "Evolution of Cooperation Driven by Reputation-Based Migration," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-7, May.
    6. Zhang, Chunyan & Zhang, Jianlei & Xie, Guangming, 2014. "Evolution of cooperation among game players with non-uniform migration scopes," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 103-111.
    7. Shilin Xiao & Liming Zhang & Haihong Li & Qionglin Dai & Junzhong Yang, 2022. "Environment-driven migration enhances cooperation in evolutionary public goods games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-9, April.
    8. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    9. Li, Wen-Jing & Jiang, Luo-Luo & Perc, Matjaž, 2021. "A limited mobility of minorities facilitates cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    10. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    11. Dhakal, Sandeep & Chiong, Raymond & Chica, Manuel & Middleton, Richard H., 2020. "Climate change induced migration and the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    12. Lin, Ying-Ting & Yang, Han-Xin & Wu, Zhi-Xi & Wang, Bing-Hong, 2011. "Promotion of cooperation by aspiration-induced migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 77-82.
    13. Ren, Yizhi & Chen, Xiangyu & Wang, Zhen & Shi, Benyun & Cui, Guanghai & Wu, Ting & Choo, Kim-Kwang Raymond, 2018. "Neighbor-considered migration facilitates cooperation in prisoner’s dilemma games," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 95-105.
    14. Yang, Zhihu & Li, Zhi & Wu, Te & Wang, Long, 2014. "Effects of payoff-related velocity in the co-evolutionary snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 304-311.
    15. Yang, Han-Xin & Tang, Ming & Wang, Zhen, 2018. "Suppressing epidemic spreading by risk-averse migration in dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 347-352.
    16. Li, Yan & Ye, Hang, 2018. "Effect of the migration mechanism based on risk preference on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 621-632.
    17. M. Droz & J. Szwabiński & G. Szabó, 2009. "Motion of influential players can support cooperation in Prisoner’s Dilemma," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 579-585, October.
    18. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Li, Lan & Yuan, Lin & Jiang, Luo-Luo & Perc, Matjaž & Kurths, Jürgen, 2022. "Eliminating poverty through social mobility promotes cooperation in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    19. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong, 2016. "Promotion of cooperation by payoff-driven migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 506-514.
    20. Ren, Tianyu & Zheng, Junjun, 2021. "Evolutionary dynamics in the spatial public goods game with tolerance-based expulsion and cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiaowei & Xia, Haoxiang, 2023. "Information accuracy of migration and imitation influences the evolution of cooperation in spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Li, Bing & Zhao, Xiaowei & Xia, Haoxiang, 2019. "Promotion of cooperation by Hybrid Migration mechanisms in the Spatial Prisoner’s Dilemma Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 1-8.
    3. He, Zhixue & Geng, Yini & Shen, Chen & Shi, Lei, 2020. "Evolution of cooperation in the spatial prisoner’s dilemma game with extortion strategy under win-stay-lose-move rule," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Zhang, Lan & Huang, Changwei & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2021. "Effects of directional migration for pursuit of profitable circumstances in evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Li, Yan & Ye, Hang & Zhang, Hong, 2016. "Evolution of cooperation driven by social-welfare-based migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 48-56.
    6. Shilin Xiao & Liming Zhang & Haihong Li & Qionglin Dai & Junzhong Yang, 2022. "Environment-driven migration enhances cooperation in evolutionary public goods games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-9, April.
    7. Liu, Yaojun & Liu, Xingwen, 2024. "Promotion of cooperation in evolutionary snowdrift game with heterogeneous memories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    8. Zhang, Lan & Pan, Jianchen & Huang, Changwei, 2023. "Effect of mixed random and directional migration on cooperation in the spatial prisoner’s dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Tian, Yue & Gao, Shun & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2024. "Particle swarm intelligence promotes cooperation by adapting interaction radii in co-evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    10. Li, Wen-Jing & Chen, Zhi & Wang, Jun & Jiang, Luo-Luo & Perc, Matjaž, 2023. "Social mobility and network reciprocity shape cooperation in collaborative networks," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Li, Yan & Ye, Hang, 2015. "Effect of migration based on strategy and cost on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 156-165.
    12. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Li, Lan & Yuan, Lin & Jiang, Luo-Luo & Perc, Matjaž & Kurths, Jürgen, 2022. "Eliminating poverty through social mobility promotes cooperation in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    13. Genki Ichinose & Masaya Saito & Shinsuke Suzuki, 2013. "Collective Chasing Behavior between Cooperators and Defectors in the Spatial Prisoner’s Dilemma," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    14. Zhang, Lan & Huang, Changwei, 2023. "Preferential selection to promote cooperation on degree–degree correlation networks in spatial snowdrift games," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    15. Wang, Chaoqian & Sun, Chengbin, 2023. "Public goods game across multilayer populations with different densities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. Zhang, Hong, 2022. "Effects of stubborn players and noise on the evolution of cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    17. Kyle Weishaar & Igor V. Erovenko, 2022. "The Evolution of Cooperation in Two-Dimensional Mobile Populations with Random and Strategic Dispersal," Games, MDPI, vol. 13(3), pages 1-16, May.
    18. Zheng, Junjun & He, Yujie & Ren, Tianyu & Huang, Yongchao, 2022. "Evolution of cooperation in public goods games with segregated networks and periodic invasion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    19. Igor V. Erovenko, 2019. "The Evolution of Cooperation in One-Dimensional Mobile Populations with Deterministic Dispersal," Games, MDPI, vol. 10(1), pages 1-12, January.
    20. Jiang, Luo-Luo & Gao, Jian & Chen, Zhi & Li, Wen-Jing & Kurths, Jürgen, 2021. "Reducing the bystander effect via decreasing group size to solve the collective-risk social dilemma," Applied Mathematics and Computation, Elsevier, vol. 410(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923002217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.