IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923006884.html
   My bibliography  Save this article

Sampled-data control for mean-square exponential stabilization of memristive neural networks under deception attacks

Author

Listed:
  • Yan, Lisha
  • Wang, Zhen
  • Zhang, Mingguang
  • Fan, Yingjie

Abstract

This paper is concerned with the mean-square exponential stabilization issue of memristive neural networks (MNNs) subject to deception attacks via sampled-data control. The reasons for considering this problem are as follows: (1) Under deception attacks, the state information transmitted in the communication network will be tampered by attackers, which may have an unpredictable impact on the system performance. Moreover, owing to the switching features of MNNs, this makes stability analysis more difficult. (2) In the existing work, it still leave room for improving the security level and the sampling interval. For these reasons, the concept of the security level that measures the anti-attack capability of MNNs is presented for the first time. A secure sampled-data controller is proposed and two looped functions are designed according to the characteristics of deception attacks to improve the security level and the sampling interval. The positivity and symmetry of relevant matrices in the Lyapunov function can be dropped compared to the traditional looped Lyapunov function, which can reduce the conservatism of the result. By utilizing inequality techniques and discrete-time Lyapunov theorem, some sufficient conditions are derived to ensure mean-square exponential stabilization of MNNs in the presence of deception attacks. Lastly, an example of a 3-D MNNs is given to verify the validity of the proposed results. Two superiorities, i.e., improving the security level and enlarging the sampling interval, of the proposed looped functions are also well discussed by a numerical example.

Suggested Citation

  • Yan, Lisha & Wang, Zhen & Zhang, Mingguang & Fan, Yingjie, 2023. "Sampled-data control for mean-square exponential stabilization of memristive neural networks under deception attacks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006884
    DOI: 10.1016/j.chaos.2023.113787
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923006884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ruimei & Zeng, Deqiang & Zhong, Shouming & Yu, Yongbin, 2017. "Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 57-74.
    2. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    3. Feng, Yuming & Yang, Xinsong & Song, Qiang & Cao, Jinde, 2018. "Synchronization of memristive neural networks with mixed delays via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 874-887.
    4. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jinrong & Chen, Guici & Wen, Shiping & Wang, Leimin, 2023. "Finite-time dissipative control for discrete-time memristive neural networks via interval matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Yaxian & Bin, Honghua & Huang, Zhenkun, 2019. "Synchronization of state-switching hopfield-type neural networks: A quantized level set approach," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 16-24.
    2. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Chen, Xiaolu & Weng, Tongfeng & Yang, Huijie, 2023. "Synchronization of spatiotemporal chaos and reservoir computing via scalar signals," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2022. "Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models," Applied Energy, Elsevier, vol. 318(C).
    5. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    7. A.S., Remya Ajai & N.B., Harikrishnan & Nagaraj, Nithin, 2023. "Analysis of logistic map based neurons in neurochaos learning architectures for data classification," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    8. Ruofeng Rao & Jialin Huang & Xinsong Yang, 2021. "Global Stabilization of a Single-Species Ecosystem with Markovian Jumping under Neumann Boundary Value via Laplacian Semigroup," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    9. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Xu, Yuxin & Gao, Fei, 2024. "A novel higher-order Deffuant–Weisbuch networks model incorporating the Susceptible Infected Recovered framework," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    11. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    12. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    13. Yin, Linfei & Wang, Tao & Zheng, Baomin, 2021. "Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems," Energy, Elsevier, vol. 216(C).
    14. Ghosh, Mousam & Ghosh, Swarnankur & Ghosh, Suman & Panda, Goutam Kumar & Saha, Pradip Kumar, 2021. "Dynamic model of infected population due to spreading of pandemic COVID-19 considering both intra and inter zone mobilization factors with rate of detection," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
    16. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    17. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    18. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Arunodaya Raj Mishra & Pratibha Rani & Fausto Cavallaro & Ibrahim M. Hezam, 2023. "An IVIF-Distance Measure and Relative Closeness Coefficient-Based Model for Assessing the Sustainable Development Barriers to Biofuel Enterprises in India," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    20. Li, Tao, 2022. "Analyst's stock views and revision actions," Finance Research Letters, Elsevier, vol. 44(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.