IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7672068.html
   My bibliography  Save this article

Global Robust Exponential Synchronization of Multiple Uncertain Neural Networks Subject to Event-Triggered Strategy

Author

Listed:
  • Jin-E Zhang
  • Huan Liu

Abstract

This paper proposes the event-triggered strategy (ETS) for multiple neural networks (NNs) with parameter uncertainty and time delay. By establishing event-triggered mechanism and using matrix inequality techniques, several sufficient criteria are obtained to ensure global robust exponential synchronization of coupling NNs. In particular, the coupling matrix need not be the Laplace matrix in this paper. In addition, the lower bounds of sampling time intervals are also found by the established event-triggered mechanism. Eventually, three numerical examples are offered to illustrate the obtained results.

Suggested Citation

  • Jin-E Zhang & Huan Liu, 2019. "Global Robust Exponential Synchronization of Multiple Uncertain Neural Networks Subject to Event-Triggered Strategy," Complexity, Hindawi, vol. 2019, pages 1-16, November.
  • Handle: RePEc:hin:complx:7672068
    DOI: 10.1155/2019/7672068
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/7672068.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/7672068.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7672068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mingwen Zheng & Lixiang Li & Haipeng Peng & Jinghua Xiao & Yixian Yang & Hui Zhao & Jingfeng Ren, 2016. "Finite-time synchronization of complex dynamical networks with multi-links via intermittent controls," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-12, February.
    2. Mingwen Zheng & Lixiang Li & Haipeng Peng & Jinghua Xiao & Yixian Yang & Hui Zhao & Jingfeng Ren, 2016. "Finite-time synchronization of complex dynamical networks with multi-links via intermittent controls," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ya & Wan, Xiaoxiao & Huang, Chuangxia & Yang, Xinsong, 2020. "Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    2. Zhang, Lingzhong & Yang, Yongqing & Xu, Xianyun, 2018. "Synchronization analysis for fractional order memristive Cohen–Grossberg neural networks with state feedback and impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 644-660.
    3. Chen, Xiao-Long & Wang, Rui-Jie & Yang, Chun & Cai, Shi-Min, 2019. "Hybrid resource allocation and its impact on the dynamics of disease spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 156-165.
    4. Zhang, Chuan & Wang, Xingyuan & Luo, Chao & Li, Junqiu & Wang, Chunpeng, 2018. "Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 251-264.
    5. Wang, Cong & Zhang, Hongli & Fan, Wenhui & Ma, Ping, 2018. "Adaptive control method for chaotic power systems based on finite-time stability theory and passivity-based control approach," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 159-167.
    6. Long, Linbo & Zhong, Kan & Wang, Wei, 2018. "Malicious viruses spreading on complex networks with heterogeneous recovery rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 746-753.
    7. Yuan, Manman & Wang, Weiping & Luo, Xiong & Liu, Linlin & Zhao, Wenbing, 2018. "Finite-time anti-synchronization of memristive stochastic BAM neural networks with probabilistic time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 244-260.
    8. Hongguang Fan & Yue Rao & Kaibo Shi & Hui Wen, 2023. "Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7672068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.