IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp838-842.html
   My bibliography  Save this article

Observability of market daily volatility

Author

Listed:
  • Petroni, Filippo
  • Serva, Maurizio

Abstract

We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 to 2014. We show that it is possible to define a Daily Market Volatility σ(t) which is directly observable from data. This quantity is usually indirectly defined by r(t)=σ(t)ω(t) where the r(t) are the daily returns of the market index and the ω(t) are i.i.d. random variables with vanishing average and unitary variance. The relation r(t)=σ(t)ω(t) alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

Suggested Citation

  • Petroni, Filippo & Serva, Maurizio, 2016. "Observability of market daily volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 838-842.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:838-842
    DOI: 10.1016/j.physa.2015.10.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115009449
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pasquini, Michele & Serva, Maurizio, 1999. "Multiscaling and clustering of volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 140-147.
    2. Guglielmo D'Amico & Filippo Petroni, 2012. "Weighted-indexed semi-Markov models for modeling financial returns," Papers 1205.2551, arXiv.org, revised Jun 2012.
    3. D’Amico, Guglielmo & Petroni, Filippo, 2012. "A semi-Markov model for price returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4867-4876.
    4. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    5. Baviera, Roberto & Pasquini, Michele & Serva, Maurizio & Vergni, Davide & Vulpiani, Angelo, 2001. "Correlations and multi-affinity in high frequency financial datasets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(3), pages 551-557.
    6. Guglielmo D'Amico & Filippo Petroni, 2011. "A semi-Markov model with memory for price changes," Papers 1109.4259, arXiv.org, revised Dec 2011.
    7. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
    8. Crato, Nuno & de Lima, Pedro J. F., 1994. "Long-range dependence in the conditional variance of stock returns," Economics Letters, Elsevier, vol. 45(3), pages 281-285.
    9. Baillie, Richard T & Bollerslev, Tim, 1994. "The long memory of the forward premium," Journal of International Money and Finance, Elsevier, vol. 13(5), pages 565-571, October.
    10. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    11. Pasquini, Michele & Serva, Maurizio, 1999. "Multiscale behaviour of volatility autocorrelations in a financial market," Economics Letters, Elsevier, vol. 65(3), pages 275-279, December.
    12. M. Pasquini & M. Serva, 2000. "Clustering of volatility as a multiscale phenomenon," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 16(1), pages 195-201, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D’Amico, Guglielmo & Gismondi, Fulvio & Petroni, Filippo & Prattico, Flavio, 2019. "Stock market daily volatility and information measures of predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 22-29.
    2. Pan, Zhiyuan & Liu, Li, 2018. "Forecasting stock return volatility: A comparison between the roles of short-term and long-term leverage effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 168-180.
    3. Zhu, Sha & Liu, Qiuhong & Wang, Yan & Wei, Yu & Wei, Guiwu, 2019. "Which fear index matters for predicting US stock market volatilities: Text-counts or option based measurement?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. Yu, Honghai & Fang, Libing & Sun, Wencong, 2018. "Forecasting performance of global economic policy uncertainty for volatility of Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 931-940.
    5. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
    6. Liu, Guangqiang & Wei, Yu & Chen, Yongfei & Yu, Jiang & Hu, Yang, 2018. "Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 288-297.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippo Petroni & Maurizio Serva, 2015. "Observability of Market Daily Volatility," Papers 1503.08032, arXiv.org.
    2. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
    3. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2013. "First and second order semi-Markov chains for wind speed modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1194-1201.
    4. Pasquini, Michele & Serva, Maurizio, 2000. "Indeterminacy in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 277(1), pages 228-238.
    5. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    6. Pasquini, Michele & Serva, Maurizio, 1999. "Multiscale behaviour of volatility autocorrelations in a financial market," Economics Letters, Elsevier, vol. 65(3), pages 275-279, December.
    7. Guglielmo D'Amico & Filippo Petroni, 2013. "Multivariate high-frequency financial data via semi-Markov processes," Papers 1305.0436, arXiv.org.
    8. Baviera, Roberto & Pasquini, Michele & Serva, Maurizio & Vergni, Davide & Vulpiani, Angelo, 2001. "Correlations and multi-affinity in high frequency financial datasets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(3), pages 551-557.
    9. G. D'Amico & F. Petroni & F. Prattico, 2013. "Semi-Markov Models in High Frequency Finance: A Review," Papers 1312.3894, arXiv.org.
    10. Michele Pasquini & Maurizio Serva, 1999. "Indeterminacy in foreign exchange market," Papers cond-mat/9906343, arXiv.org.
    11. Muniandy, Sithi V. & Uning, Rosemary, 2006. "Characterization of exchange rate regimes based on scaling and correlation properties of volatility for ASEAN-5 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 585-598.
    12. Hernández-Pérez, R., 2012. "Allan deviation analysis of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2883-2888.
    13. Jonathan Manton & Anton Muscatelli & Vikram Krishnamurthy & Stan Hurn, "undated". "Modelling Stock Market Excess Returns by Markov Modulated Gaussian Noise," Working Papers 9806, Business School - Economics, University of Glasgow.
    14. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Economics Working Papers 2008-08, Christian-Albrechts-University of Kiel, Department of Economics.
    15. D’Amico, Guglielmo & Petroni, Filippo, 2018. "Copula based multivariate semi-Markov models with applications in high-frequency finance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 765-777.
    16. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    17. Kaizoji, Taisei & Leiss, Matthias & Saichev, Alexander & Sornette, Didier, 2015. "Super-exponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 289-310.
    18. Mu, Guo-Hua & Zhou, Wei-Xing, 2008. "Relaxation dynamics of aftershocks after large volatility shocks in the SSEC index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5211-5218.
    19. Guglielmo D'Amico & Filippo Petroni, 2017. "A new approach to the modeling of financial volumes," Papers 1709.05823, arXiv.org.
    20. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:838-842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.