IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v482y2017icp741-756.html
   My bibliography  Save this article

Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics

Author

Listed:
  • Zhang, Yali
  • Wang, Jun

Abstract

In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model — the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.

Suggested Citation

  • Zhang, Yali & Wang, Jun, 2017. "Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 741-756.
  • Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:741-756
    DOI: 10.1016/j.physa.2017.04.166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117304764
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Telesca, Luciano & Lovallo, Michele & Ramirez-Rojas, Alejandro & Flores-Marquez, Leticia, 2013. "Investigating the time dynamics of seismicity by using the visibility graph approach: Application to seismicity of Mexican subduction zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6571-6577.
    2. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    3. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    4. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    5. Telesca, Luciano & Lovallo, Michele & Pierini, Jorge O., 2012. "Visibility graph approach to the analysis of ocean tidal records," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1086-1091.
    6. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    7. Hao Meng & Fei Ren & Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei-Xing Zhou & Wei Zhang, 2012. "Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations," Papers 1201.2825, arXiv.org.
    8. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    9. Yao Yu & Jun Wang, 2012. "Lattice-oriented percolation system applied to volatility behavior of stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 785-797, August.
    10. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    11. Gao-Feng Gu & Wei-Xing Zhou, 2008. "Emergence of long memory in stock volatility from a modified Mike-Farmer model," Papers 0807.4639, arXiv.org, revised May 2009.
    12. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    13. Wen Fang & Jun Wang, 2012. "Statistical Properties And Multifractal Behaviors Of Market Returns By Ising Dynamic Systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 23(03), pages 1-14.
    14. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    15. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    16. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    17. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical distributions of Chinese stock returns at different microscopic timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 495-502.
    18. D’Urso, Pierpaolo & Cappelli, Carmela & Di Lallo, Dario & Massari, Riccardo, 2013. "Clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2114-2129.
    19. Wang, Tiansong & Wang, Jun & Zhang, Junhuan & Fang, Wen, 2011. "Voter interacting systems applied to Chinese stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2492-2506.
    20. Niu, Hongli & Wang, Jun & Lu, Yunfan, 2016. "Fluctuation behaviors of financial return volatility duration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 30-40.
    21. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    22. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, September.
    23. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    24. A. Krawiecki, 2005. "Microscopic Spin Model For The Stock Market With Attractor Bubbling And Heterogeneous Agents," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 549-559.
    25. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    26. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    27. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yali & Wang, Jun, 2019. "Linkage influence of energy market on financial market by multiscale complexity synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 254-266.
    2. Jia, Linlu & Ke, Jinchuan & Wang, Jun, 2019. "Volatility aggregation intensity energy futures series on stochastic finite-range exclusion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 370-383.
    3. Lahmiri, Salim & Bekiros, Stelios & Avdoulas, Christos, 2018. "Time-dependent complexity measurement of causality in international equity markets: A spatial approach," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 215-219.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Wen & Ke, Jinchuan & Wang, Jun & Feng, Ling, 2016. "Linking market interaction intensity of 3D Ising type financial model with market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 531-542.
    2. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    3. Zhang, Bo & Wang, Jun & Fang, Wen, 2015. "Volatility behavior of visibility graph EMD financial time series from Ising interacting system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 301-314.
    4. Xiaotao Zhang & Jing Ping & Tao Zhu & Yuelei Li & Xiong Xiong, 2016. "Are Price Limits Effective? An Examination of an Artificial Stock Market," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-21, August.
    5. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    6. Wang, Yiduan & Zheng, Shenzhou & Zhang, Wei & Wang, Jun & Wang, Guochao, 2018. "Modeling and complexity of stochastic interacting Lévy type financial price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 498-511.
    7. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    8. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.
    9. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    10. B. Zhang & J. Wang & W. Zhang & G. C. Wang, 2020. "Nonlinear Scaling Behavior of Visible Volatility Duration for Financial Statistical Physics Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 373-389, August.
    11. Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
    12. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    13. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    14. Zhang, Bo & Wang, Guochao & Wang, Yiduan & Zhang, Wei & Wang, Jun, 2019. "Multiscale statistical behaviors for Ising financial dynamics with continuum percolation jump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1012-1025.
    15. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    16. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    17. Zeng, Yayun & Wang, Jun & Xu, Kaixuan, 2017. "Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 364-376.
    18. Begušić, Stjepan & Kostanjčar, Zvonko & Eugene Stanley, H. & Podobnik, Boris, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 400-406.
    19. Derksen, M. & Kleijn, B. & de Vilder, R., 2022. "Heavy tailed distributions in closing auctions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    20. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:741-756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.