IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0170766.html
   My bibliography  Save this article

A detailed heterogeneous agent model for a single asset financial market with trading via an order book

Author

Listed:
  • Roberto Mota Navarro
  • Hernán Larralde

Abstract

We present an agent based model of a single asset financial market that is capable of replicating most of the non-trivial statistical properties observed in real financial markets, generically referred to as stylized facts. In our model agents employ strategies inspired on those used in real markets, and a realistic trade mechanism based on a double auction order book. We study the role of the distinct types of trader on the return statistics: specifically, correlation properties (or lack thereof), volatility clustering, heavy tails, and the degree to which the distribution can be described by a log-normal. Further, by introducing the practice of “profit taking”, our model is also capable of replicating the stylized fact related to an asymmetry in the distribution of losses and gains.

Suggested Citation

  • Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
  • Handle: RePEc:plo:pone00:0170766
    DOI: 10.1371/journal.pone.0170766
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170766
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0170766&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0170766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    2. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    3. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    4. Benoit Mandelbrot & Howard M. Taylor, 1967. "On the Distribution of Stock Price Differences," Operations Research, INFORMS, vol. 15(6), pages 1057-1062, December.
    5. Yi-Fang Liu & Wei Zhang & Chao Xu & Jørgen Vitting Andersen & Hai-Chuan Xu, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01011701, HAL.
    6. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, January.
    7. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    8. Bouchaud, Jean-Philippe & Potters, Marc, 2001. "More stylized facts of financial markets: leverage effect and downside correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 60-70.
    9. Krishna Rao & Argia M. Sbordone & Andrea Tambalotti & Kieran Walsh, 2010. "Policy analysis using DSGE models: an introduction," Economic Policy Review, Federal Reserve Bank of New York, vol. 16(Oct), pages 23-43.
    10. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical distributions of Chinese stock returns at different microscopic timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 495-502.
    11. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    12. Yi-Fang Liu & Wei Zhang & Chao Xu & Jørgen Vitting Andersen & Hai-Chuan Xu, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01215947, HAL.
    13. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    14. Yi-Fang Liu & Wei Zhang & Chao Xu & Jørgen Vitting Andersen & Hai-Chuan Xu, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Post-Print halshs-01215947, HAL.
    15. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    16. Marco Licalzi & Paolo Pellizzari, 2003. "Fundamentalists clashing over the book: a study of order-driven stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 470-480.
    17. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    18. Mario A Bertella & Felipe R Pires & Ling Feng & Harry Eugene Stanley, 2014. "Confidence and the Stock Market: An Agent-Based Approach," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    19. Paul Grauwe, 2010. "The scientific foundation of dynamic stochastic general equilibrium (DSGE) models," Public Choice, Springer, vol. 144(3), pages 413-443, September.
    20. Yi-Fang Liu & Wei Zhang & Chao Xu & Jørgen Vitting Andersen & Hai-Chuan Xu, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00983051, HAL.
    21. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    22. Zhang, Wei & Bi, Zhengzheng & Shen, Dehua, 2017. "Investor structure and the price–volume relationship in a continuous double auction market: An agent-based modeling perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 345-355.
    23. Jeff Alstott & Ed Bullmore & Dietmar Plenz, 2014. "powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    24. V. Alfi & M. Cristelli & L. Pietronero & A. Zaccaria, 2009. "Minimal agent based model for financial markets I," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 385-397, February.
    25. Damien Challet & Robin Stinchcombe, 2003. "Non-constant rates and over-diffusive prices in a simple model of limit order markets," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 155-162.
    26. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    27. Hao Meng & Fei Ren & Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei-Xing Zhou & Wei Zhang, 2012. "Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations," Papers 1201.2825, arXiv.org.
    28. Liu, Yi-Fang & Zhang, Wei & Xu, Chao & Vitting Andersen, Jørgen & Xu, Hai-Chuan, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 204-215.
    29. Yi-Fang Liu & Wei Zhang & Chao Xu & Jørgen Vitting Andersen & Hai-Chuan Xu, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Post-Print halshs-00983051, HAL.
    30. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    31. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    32. Thilo A. Schmitt & Rudi Schafer & Michael C. Munnix & Thomas Guhr, 2012. "Microscopic understanding of heavy-tailed return distributions in an agent-based model," Papers 1207.2946, arXiv.org.
    33. Yamamoto, Ryuichi, 2011. "Order aggressiveness, pre-trade transparency, and long memory in an order-driven market," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1938-1963.
    34. Maslov, Sergei, 2000. "Simple model of a limit order-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(3), pages 571-578.
    35. Yi-Fang Liu & Wei Zhang & Chao Xu & J{o}rgen Vitting Andersen & Hai-Chuan Xu, 2013. "Impact of information cost and switching of trading strategies in an artificial stock market," Papers 1311.4274, arXiv.org, revised Jul 2014.
    36. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    37. Andrea Consiglio & Valerio Lacagnina & Annalisa Russino, 2005. "A simulation analysis of the microstructure of an order driven financial market with multiple securities and portfolio choices," Quantitative Finance, Taylor & Francis Journals, vol. 5(1), pages 71-87.
    38. Marc Potters & Jean-Philippe Bouchaud, 2001. "More stylized facts of financial markets: leverage effect and downside correlations," Science & Finance (CFM) working paper archive 29960, Science & Finance, Capital Fund Management.
    39. Gao-Feng Gu & Wei-Xing Zhou, 2008. "Emergence of long memory in stock volatility from a modified Mike-Farmer model," Papers 0807.4639, arXiv.org, revised May 2009.
    40. Yi-Fang Liu & Wei Zhang & Chao Xu & Jørgen Vitting Andersen & Hai-Chuan Xu, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Documents de travail du Centre d'Economie de la Sorbonne 14031, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    41. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    42. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Rojo-Suárez & Ana Belén Alonso-Conde, 2020. "Impact of consumer confidence on the expected returns of the Tokyo Stock Exchange: A comparative analysis of consumption and production-based asset pricing models," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    2. Kononovicius, Aleksejus & Ruseckas, Julius, 2019. "Order book model with herd behavior exhibiting long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 171-191.
    3. Haijun Yang & Shuheng Chen, 2018. "A heterogeneous artificial stock market model can benefit people against another financial crisis," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-25, June.
    4. Stein, Julian Alexander Cornelius & Braun, Dieter, 2019. "Stability of a time-homogeneous system of money and antimoney in an agent-based random economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 232-249.
    5. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2022. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Post-Print hal-03827363, HAL.
    6. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    7. Yong Shi & Bo Li & Guangle Du, 2021. "Pyramid scheme in stock market: a kind of financial market simulation," Papers 2102.02179, arXiv.org, revised Feb 2021.
    8. Aleksejus Kononovicius & Julius Ruseckas, 2018. "Order book model with herd behavior exhibiting long-range memory," Papers 1809.02772, arXiv.org, revised Apr 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    2. Kyubin Yim & Gabjin Oh & Seunghwan Kim, 2016. "Understanding Financial Market States Using an Artificial Double Auction Market," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    3. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    4. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    5. Basaure, Arturo & Suomi, Henna & Hämmäinen, Heikki, 2014. "Effects of transaction and switching costs on mobile market performance," 20th ITS Biennial Conference, Rio de Janeiro 2014: The Net and the Internet - Emerging Markets and Policies 106830, International Telecommunications Society (ITS).
    6. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    7. Basaure, Arturo & Suomi, Henna & Hämmäinen, Heikki, 2016. "Transaction vs. switching costs—Comparison of three core mechanisms for mobile markets," Telecommunications Policy, Elsevier, vol. 40(6), pages 545-566.
    8. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    9. Xiaotao Zhang & Jing Ping & Tao Zhu & Yuelei Li & Xiong Xiong, 2016. "Are Price Limits Effective? An Examination of an Artificial Stock Market," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-21, August.
    10. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    11. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    12. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    13. Alessio Emanuele Biondo, 2020. "Information versus imitation in a real-time agent-based model of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(3), pages 613-631, July.
    14. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    15. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    16. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    17. Wagner, D.C. & Schmitt, T.A. & Schäfer, R. & Guhr, T. & Wolf, D.E., 2014. "Analysis of a decision model in the context of equilibrium pricing and order book pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 347-353.
    18. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    19. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    20. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0170766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.