IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v405y2014icp303-315.html
   My bibliography  Save this article

Dynamic analysis of traffic time series at different temporal scales: A complex networks approach

Author

Listed:
  • Tang, Jinjun
  • Wang, Yinhai
  • Wang, Hua
  • Zhang, Shen
  • Liu, Fang

Abstract

The analysis of dynamics in traffic flow is an important step to achieve advanced traffic management and control in Intelligent Transportation System (ITS). Complexity and periodicity are definitely two fundamental properties in traffic dynamics. In this study, we first measure the complexity of traffic flow data by Lempel–Ziv algorithm at different temporal scales, and the data are collected from loop detectors on freeway. Second, to obtain more insight into the complexity and periodicity in traffic time series, we then construct complex networks from traffic time series by considering each day as a cycle and each cycle as a single node. The optimal threshold value of complex networks is estimated by the distribution of density and its derivative. In addition, the complex networks are subsequently analyzed in terms of some statistical properties, such as average path length, clustering coefficient, density, average degree and betweenness. Finally, take 2 min aggregation data as example, we use the correlation coefficient matrix, adjacent matrix and closeness to exploit the periodicity of weekdays and weekends in traffic flow data. The findings in this paper indicate that complex network is a practical tool for exploring dynamics in traffic time series.

Suggested Citation

  • Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
  • Handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:303-315
    DOI: 10.1016/j.physa.2014.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114002337
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yue & Wang, Jianbo & Yang, Huijie & Mang, Jingshi, 2009. "Visibility graph approach to exchange rate series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4431-4437.
    2. Yang, Yue & Yang, Huijie, 2008. "Complex network-based time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1381-1386.
    3. Wang, Na & Li, Dong & Wang, Qiwen, 2012. "Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6543-6555.
    4. Chang, Hui & Su, Bei-Bei & Zhou, Yue-Ping & He, Da-Ren, 2007. "Assortativity and act degree distribution of some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 687-702.
    5. Karimi, Somaye & Darooneh, Amir H., 2013. "Measuring persistence in a stationary time series using the complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 287-293.
    6. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    7. Yang, Xu-Hua & Chen, Guang & Sun, Bao & Chen, Sheng-Yong & Wang, Wan-Liang, 2011. "Bus transport network model with ideal n-depth clique network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4660-4672.
    8. Gao, Kun & Jiang, Rui & Wang, Bing-Hong & Wu, Qing-Song, 2009. "Discontinuous transition from free flow to synchronized flow induced by short-range interaction between vehicles in a three-phase traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3233-3243.
    9. Chen, Yong-Zhou & Li, Nan & He, Da-Ren, 2007. "A study on some urban bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 747-754.
    10. Wastavino, L.A. & Toledo, B.A. & Rogan, J. & Zarama, R. & Muñoz, V. & Valdivia, J.A., 2007. "Modeling traffic on crossroads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 411-419.
    11. Bernardo A. Huberman & Lada A. Adamic, 1999. "Growth dynamics of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 131-131, September.
    12. Nakamura, Tomomichi & Tanizawa, Toshihiro, 2012. "Networks with time structure from time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4704-4710.
    13. Dong, Yan & Huang, Wenwen & Liu, Zonghua & Guan, Shuguang, 2013. "Network analysis of time series under the constraint of fixed nearest neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 967-973.
    14. Herrmann, Matthias & Kerner, Boris S, 1998. "Local cluster effect in different traffic flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 255(1), pages 163-188.
    15. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    16. Gutin, Gregory & Mansour, Toufik & Severini, Simone, 2011. "A characterization of horizontal visibility graphs and combinatorics on words," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2421-2428.
    17. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    18. Caraiani, Petre, 2012. "Characterizing emerging European stock markets through complex networks: From local properties to self-similar characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(13), pages 3629-3637.
    19. Richard J. Williams & Neo D. Martinez, 2000. "Simple rules yield complex food webs," Nature, Nature, vol. 404(6774), pages 180-183, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.
    2. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    3. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    4. Yao, Can-Zhong & Lin, Ji-Nan & Zheng, Xu-Zhou & Liu, Xiao-Feng, 2015. "The study of RMB exchange rate complex networks based on fluctuation mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 359-376.
    5. Zhang, Yali & Wang, Jun, 2017. "Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 741-756.
    6. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    7. Yang, Qiaoli & Shi, Zhongke & Tang, Min-an & Gao, Fengyang & Yu, Shaowei, 2019. "Modeling the permissive-only left-turn queue at signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 315-325.
    8. Yuan, PengCheng & Lin, XuXun, 2017. "How long will the traffic flow time series keep efficacious to forecast the future?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 419-431.
    9. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    10. Yong Wang & Xiaolei Ma & Yong Liu & Ke Gong & Kristian C Henricakson & Maozeng Xu & Yinhai Wang, 2016. "A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-24, January.
    11. Jiang, Xurui & Wen, Xiangxi & Wu, Minggong & Song, Min & Tu, Congliang, 2019. "A complex network analysis approach for identifying air traffic congestion based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 364-381.
    12. Yan, Ying & Zhang, Shen & Tang, Jinjun & Wang, Xiaofei, 2017. "Understanding characteristics in multivariate traffic flow time series from complex network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 149-160.
    13. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    14. Rui Ding & Jian Yin & Peng Dai & Lu Jiao & Rong Li & Tongfei Li & Jianjun Wu, 2019. "Optimal Topology of Multilayer Urban Traffic Networks," Complexity, Hindawi, vol. 2019, pages 1-19, October.
    15. Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
    16. Wang, Jin-Fa & He, Xuan & Si, Shuai-Zong & Zhao, Hai & Zheng, Chunyang & Yu, Hao, 2019. "Using complex network theory for temporal locality in network traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 722-736.
    17. Tang, Jinjun & Zhang, Shen & Chen, Xinqiang & Liu, Fang & Zou, Yajie, 2018. "Taxi trips distribution modeling based on Entropy-Maximizing theory: A case study in Harbin city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 430-443.
    18. Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
    19. Sheikh, Muhammad Sameer & Regan, Amelia, 2022. "A complex network analysis approach for estimation and detection of traffic incidents based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    20. Tang, Jinjun & Liu, Fang & Zhang, Weibin & Zhang, Shen & Wang, Yinhai, 2016. "Exploring dynamic property of traffic flow time series in multi-states based on complex networks: Phase space reconstruction versus visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 635-648.
    21. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    2. Yan, Ying & Zhang, Shen & Tang, Jinjun & Wang, Xiaofei, 2017. "Understanding characteristics in multivariate traffic flow time series from complex network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 149-160.
    3. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    4. Liu, Hao-Ran & Li, Ming-Xia & Zhou, Wei-Xing, 2024. "Visibility graph analysis of the grains and oilseeds indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    5. An, Haizhong & Gao, Xiangyun & Fang, Wei & Huang, Xuan & Ding, Yinghui, 2014. "The role of fluctuating modes of autocorrelation in crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 382-390.
    6. Cao, Guangxi & Zhang, Qi & Li, Qingchen, 2017. "Causal relationship between the global foreign exchange market based on complex networks and entropy theory," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 36-44.
    7. Dong, Yan & Huang, Wenwen & Liu, Zonghua & Guan, Shuguang, 2013. "Network analysis of time series under the constraint of fixed nearest neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 967-973.
    8. O’Pella, Justin, 2019. "Horizontal visibility graphs are uniquely determined by their directed degree sequence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    9. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    10. Mutua Stephen & Changgui Gu & Huijie Yang, 2015. "Visibility Graph Based Time Series Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    11. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2017. "A novel weight determination method for time series data aggregation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 42-55.
    12. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Chen, Shiyu & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A visibility graph averaging aggregation operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 1-12.
    14. Wang, Minggang & Tian, Lixin, 2016. "From time series to complex networks: The phase space coarse graining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 456-468.
    15. Tang, Jinjun & Liu, Fang & Zhang, Weibin & Zhang, Shen & Wang, Yinhai, 2016. "Exploring dynamic property of traffic flow time series in multi-states based on complex networks: Phase space reconstruction versus visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 635-648.
    16. Liu, Keshi & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2020. "Visibility graph analysis of Bitcoin price series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    17. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    18. Schmidt, Jonas & Köhne, Daniel, 2023. "A simple scalable linear time algorithm for horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    19. Jihui Han & Wei Li & Longfeng Zhao & Zhu Su & Yijiang Zou & Weibing Deng, 2017. "Community detection in dynamic networks via adaptive label propagation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    20. Li, Xinna & Wu, Huaiqin & Cao, Jinde, 2023. "Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 647-668.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:303-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.