IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i24p6571-6577.html
   My bibliography  Save this article

Investigating the time dynamics of seismicity by using the visibility graph approach: Application to seismicity of Mexican subduction zone

Author

Listed:
  • Telesca, Luciano
  • Lovallo, Michele
  • Ramirez-Rojas, Alejandro
  • Flores-Marquez, Leticia

Abstract

By using the method of the visibility graph (VG), five magnitude time series extracted from the seismic catalog of the Mexican subduction zone were investigated. The five seismic sequences represent the seismicity which occurred between 2005 and 2012 in five seismic areas: Guerrero, Chiapas, Oaxaca, Jalisco and Michoacán. Among the five seismic sequences, the Jalisco sequence shows VG properties significantly different from those shown by the other four. Such a difference could be inherent in the different tectonic settings of Jalisco with respect to those characterizing the other four areas. The VG properties of the seismic sequences have been put in relationship with the more typical seismological characteristics (b-value and a-value of the Gutenberg–Richter law).

Suggested Citation

  • Telesca, Luciano & Lovallo, Michele & Ramirez-Rojas, Alejandro & Flores-Marquez, Leticia, 2013. "Investigating the time dynamics of seismicity by using the visibility graph approach: Application to seismicity of Mexican subduction zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6571-6577.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:24:p:6571-6577
    DOI: 10.1016/j.physa.2013.08.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113008285
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.08.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Telesca, Luciano & Lovallo, Michele & Pierini, Jorge O., 2012. "Visibility graph approach to the analysis of ocean tidal records," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1086-1091.
    2. Aleksander Janicki & Aleksander Weron, 1994. "Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook9401, December.
    3. Andriana S L O Campanharo & M Irmak Sirer & R Dean Malmgren & Fernando M Ramos & Luís A Nunes Amaral, 2011. "Duality between Time Series and Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xuehui & Wu, Zhong & Hu, Jun, 2022. "Global competitiveness analysis of industrial robot technology innovations market layout using visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    2. Telesca, Luciano & Lovallo, Michele & Toth, Laszlo, 2014. "Visibility graph analysis of 2002–2011 Pannonian seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 219-224.
    3. Chen, Shiyu & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A visibility graph averaging aggregation operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 1-12.
    4. Zhang, Yali & Wang, Jun, 2017. "Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 741-756.
    5. Zhang, Bo & Wang, Jun & Fang, Wen, 2015. "Volatility behavior of visibility graph EMD financial time series from Ising interacting system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 301-314.
    6. Flores-Márquez, E.L. & Ramírez-Rojas, A. & Telesca, L., 2015. "Multifractal detrended fluctuation analysis of earthquake magnitude series of Mexican South Pacific Region," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1106-1114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serinaldi, Francesco & Kilsby, Chris G., 2016. "Irreversibility and complex network behavior of stream flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 585-600.
    2. Sudhamayee, K. & Krishna, M. Gopal & Manimaran, P., 2023. "Simplicial network analysis on EEG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Makoto Maejima & Gennady Samorodnitsky, 1999. "Certain Probabilistic Aspects of Semistable Laws," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(3), pages 449-462, September.
    4. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    5. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    6. Foad Shokrollahi & Marcin Marcin Magdziarz, 2020. "Equity warrant pricing under subdiffusive fractional Brownian motion of the short rate," Papers 2007.12228, arXiv.org, revised Nov 2020.
    7. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    8. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    9. Yuan, Qianshun & Zhang, Jing & Wang, Haiying & Gu, Changgui & Yang, Huijie, 2023. "A multi-scale transition matrix approach to chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Ortobelli, Sergio & Rachev, Svetlozar & Schwartz, Eduardo, 2000. "The Problem of Optimal Asset Allocation with Stable Distributed Returns," University of California at Los Angeles, Anderson Graduate School of Management qt3zd6q86c, Anderson Graduate School of Management, UCLA.
    11. Michna, Zbigniew, 2008. "Asymptotic behavior of the supremum tail probability for anomalous diffusions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 413-417.
    12. Menn, Christian & Rachev, Svetlozar T., 2005. "A GARCH option pricing model with [alpha]-stable innovations," European Journal of Operational Research, Elsevier, vol. 163(1), pages 201-209, May.
    13. Żaba, Mariusz & Garbaczewski, Piotr & Stephanovich, Vladimir, 2013. "Lévy flights in confining environments: Random paths and their statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3485-3496.
    14. Kim, Panki, 2006. "Weak convergence of censored and reflected stable processes," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1792-1814, December.
    15. Xu, Yong & Feng, Jing & Li, JuanJuan & Zhang, Huiqing, 2013. "Stochastic bifurcation for a tumor–immune system with symmetric Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4739-4748.
    16. Nolan, John P., 1998. "Parameterizations and modes of stable distributions," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 187-195, June.
    17. Stoyan Stoyanov & Borjana Racheva-Iotova & Svetlozar Rachev & Frank Fabozzi, 2010. "Stochastic models for risk estimation in volatile markets: a survey," Annals of Operations Research, Springer, vol. 176(1), pages 293-309, April.
    18. Ahmadi, Negar & Pei, Yulong & Pechenizkiy, Mykola, 2019. "Effect of linear mixing in EEG on synchronization and complex network measures studied using the Kuramoto model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 289-308.
    19. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    20. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:24:p:6571-6577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.