IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v482y2017icp458-476.html
   My bibliography  Save this article

Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip

Author

Listed:
  • Ranjit, N.K.
  • Shit, G.C.

Abstract

This paper aims to develop a mathematical model for magnetohydrodynamic flow of biofluids through a hydrophobic micro-channel with periodically contracting and expanding walls under the influence of an axially applied electric field. The velocity slip effects have been taken into account at the channel walls by employing different slip lengths due to hydrophobic gating. Different temperature jump factors have also been used to investigate the thermomechanical interactions at the fluid–solid interface. The electromagnetohydrodynamic flow in a microchannel is simplified under the framework of Debye–Hückel linearization approximation. We have derived the closed-form solutions for the linearized dimensionless boundary value problem under the assumptions of long wave length and low Reynolds number. The axial velocity, temperature, pressure distribution, stream function, wall shear stress and the Nusselt number have been appraised for diverse values of the parameters approaching into the problem. Our main focus is to determine the effects of different zeta potential on the axial velocity and temperature distribution under electromagnetic environment. This study puts forward an important observation that the different zeta potential plays an important role in controlling fluid velocity. The study further reveals that the temperature increases significantly with the Joule heating parameter and the Brinkman number (arises due to the dissipation of energy).

Suggested Citation

  • Ranjit, N.K. & Shit, G.C., 2017. "Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 458-476.
  • Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:458-476
    DOI: 10.1016/j.physa.2017.04.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117303825
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2015. "Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 273-286.
    2. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1040-1057.
    3. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2014. "Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer," Energy, Elsevier, vol. 75(C), pages 400-410.
    4. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotically driven MHD flow and heat transfer in micro-channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 437-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahzadi, Iqra & Ahsan, Naveed & Nadeem, S. & Issakhov, Alibek, 2020. "Analysis of bifurcation dynamics of streamlines topologies for pseudoplastic shear thinning fluid: Biomechanics application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Abdulhameed, M. & Muhammad, M.M. & Gital, A.Y. & Yakubu, D.G. & Khan, I., 2019. "Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 42-71.
    3. Mukherjee, S. & Shit, G.C., 2022. "Mathematical modeling of electrothermal couple stress nanofluid flow and entropy in a porous microchannel under injection process," Applied Mathematics and Computation, Elsevier, vol. 426(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    2. Balaram Kundu & Sujit Saha, 2022. "Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels," Energies, MDPI, vol. 15(19), pages 1-51, September.
    3. Ali J. Chamkha & Fatih Selimefendigil & Hakan F. Oztop, 2020. "Pulsating Flow of CNT–Water Nanofluid Mixed Convection in a Vented Trapezoidal Cavity with an Inner Conductive T-Shaped Object and Magnetic Field Effects," Energies, MDPI, vol. 13(4), pages 1-30, February.
    4. Sheikholeslami, Mohsen & Bandpy, Mofid Gorji & Ashorynejad, Hamid Reza, 2015. "Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 58-70.
    5. Misra, J.C. & Sinha, A. & Mallick, B., 2017. "Stagnation point flow and heat transfer on a thin porous sheet: Applications to flow dynamics of the circulatory system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 330-344.
    6. Yedhu Krishnan, R. & Manikandan, S. & Suganthi, K.S. & Leela Vinodhan, V. & Rajan, K.S., 2016. "Novel copper – Propylene glycol nanofluid as efficient thermic fluid for potential application in discharge cycle of thermal energy storage," Energy, Elsevier, vol. 107(C), pages 482-492.
    7. Hajmohammadi, M.R. & Haji Molla Ali Tork, M.H., 2019. "Effects of the magnetic field on the cylindrical Couette flow and heat transfer of a nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 234-245.
    8. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    9. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    11. Khan, Arif Ullah & Saleem, S. & Nadeem, S. & Alderremy, A.A., 2020. "Analysis of unsteady non-axisymmetric Homann stagnation point flow of nanofluid and possible existence of multiple solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    12. Sheikholeslami, M. & Vajravelu, K., 2017. "Nanofluid flow and heat transfer in a cavity with variable magnetic field," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 272-282.
    13. Aly, Abdelraheem M. & Raizah, Z.A.S., 2020. "Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    14. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1040-1057.
    15. Izadi, Mohsen & Mohebbi, Rasul & Sajjadi, Hasan & Delouei, Amin Amiri, 2019. "LTNE modeling of Magneto-Ferro natural convection inside a porous enclosure exposed to nonuniform magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    16. Shahsavar, Amin & Eisapour, Mehdi & Talebizadehsardari, Pouyan, 2020. "Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular," Energy, Elsevier, vol. 208(C).
    17. Cesar A. Valencia & David A. Torres & Clara G. Hernández & Juan P. Escandón & Juan R. Gómez & René O. Vargas, 2023. "Start-Up Multilayer Electro-Osmotic Flow of Maxwell Fluids through an Annular Microchannel under Hydrodynamic Slip Conditions," Mathematics, MDPI, vol. 11(20), pages 1-29, October.
    18. Selimefendigil, Fatih & Öztop, Hakan F., 2019. "MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    19. Zheng, Bin & Sun, Peng & Liu, Yongqi & Zhao, Qiang, 2018. "Heat transfer of calcined petroleum coke and heat exchange tube for calcined petroleum coke waste heat recovery," Energy, Elsevier, vol. 155(C), pages 56-65.
    20. Ren, Yaqian & Kong, Yanlong & Pang, Zhonghe & Wang, Jiyang, 2023. "A comprehensive review of tracer tests in enhanced geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:458-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.