IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v449y2016icp437-454.html
   My bibliography  Save this article

Electro-osmotically driven MHD flow and heat transfer in micro-channel

Author

Listed:
  • Shit, G.C.
  • Mondal, A.
  • Sinha, A.
  • Kundu, P.K.

Abstract

A theoretical analysis is presented for electro-osmotic flow (EOF) of blood in a hydrophobic micro-channel with externally applied magnetic field. The lumen of micro-channels is assumed to be porous medium in addition to the consideration of permeability of the channel walls. The effects of slip velocity and thermal-slip are taken into consideration. The governing equations in the electrical double layer (EDL) together with the Poisson–Boltzmann equation and the body force exerted by the applied potential are furthermore considered. The flow is governed by the non-Newtonian viscoelastic fluid model. These equations along with the thermal energy equation are approximated by assuming that the channel height is much greater than the thickness of electrical double layer consisting the stern and diffusive layers. The problem is solved analytically and the computed results have presented graphically for various values of the dimensionless parameters. The results presented here have significant impact on the therapeutic treatment in hyperthermia as well as in controlling blood flow and heat transfer in micro-channels.

Suggested Citation

  • Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotically driven MHD flow and heat transfer in micro-channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 437-454.
  • Handle: RePEc:eee:phsmap:v:449:y:2016:i:c:p:437-454
    DOI: 10.1016/j.physa.2016.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116000169
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Yong Hong & Wiwatanapataphee, B. & Hu, Maobin, 2008. "Pressure-driven transient flows of Newtonian fluids through microtubes with slip boundary," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 5979-5990.
    2. El-Shahed, Moustafa, 2004. "Blood flow in a capillary with permeable wall," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 544-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranjit, N.K. & Shit, G.C., 2017. "Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 458-476.
    2. Misra, J.C. & Sinha, A. & Mallick, B., 2017. "Stagnation point flow and heat transfer on a thin porous sheet: Applications to flow dynamics of the circulatory system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 330-344.
    3. Balaram Kundu & Sujit Saha, 2022. "Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels," Energies, MDPI, vol. 15(19), pages 1-51, September.
    4. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1040-1057.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1040-1057.
    2. Anand, Vishal, 2014. "Slip law effects on heat transfer and entropy generation of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition," Energy, Elsevier, vol. 76(C), pages 716-732.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:449:y:2016:i:c:p:437-454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.