IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2666-d1405688.html
   My bibliography  Save this article

Combined Geometrical Optimisation of a Square Microchannel with Smoothed Corners

Author

Listed:
  • Marco Lorenzini

    (Industrial Engineering Department—DIN, Alma Mater Studiorum, Università di Bologna, Forlì Campus, Via Fontanelle 40, 47121 Forlì, Italy
    These authors contributed equally to this work.)

  • Nicola Suzzi

    (Dipartimento Politecnico di Ingegneria e Architettura (DPIA), Università degli Studi di Udine, Via delle Scienze 206, 33100 Udine, Italy
    These authors contributed equally to this work.)

Abstract

Several engineering systems currently use microchannel heat sinks. In order to increase the performance of these devices, optimisation according to the first and second law of thermodynamics is employed. One way to achieve the goal is to modify the geometry of the cross-section, as is done in this paper for square ducts, having the walls at a uniform temperature which is higher than that of the bulk fluid at the inlet. The effects of both the thermal entry region of the duct and the heat generation due to viscous dissipation are considered. The resulting Graetz–Brinkman problem is solved numerically to obtain the velocity and temperature fields. It is demonstrated that non-negligible viscous heating eventually causes the heat flux to reverse (from fluid to walls), and that, only after this condition is achieved, can the flow become fully developed, which makes the entry region the only useful stretch for real-life applications. The length after which the direction of the heat flux reverses due to viscous heating in the fluid is obtained as a function of the Brinkman number and of the smoothing radius. Optimisation with performance evaluation criteria and entropy generation minimisation was carried out separately, and the results were combined into a single objective function. A comparison with published models highlights how neglecting the entry region and viscous heating yields misleading results. It turns out that smoothing the corners is always profitable in the case of the constrained heated perimeter or area of the cross-section but seldom when the characteristic length or the hydraulic diameter is fixed. With few exceptions, viscous heating amplifies the trends experienced for zero-Brinkman flows. The results are in non-dimensional form, yet they have been obtained starting from plausible dimensional values and are applicable to real-life devices.

Suggested Citation

  • Marco Lorenzini & Nicola Suzzi, 2024. "Combined Geometrical Optimisation of a Square Microchannel with Smoothed Corners," Energies, MDPI, vol. 17(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2666-:d:1405688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2666/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1040-1057.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Xie, Zhi-Yong & Jian, Yong-Jun, 2017. "Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels," Energy, Elsevier, vol. 139(C), pages 1080-1093.
    3. Misra, J.C. & Sinha, A. & Mallick, B., 2017. "Stagnation point flow and heat transfer on a thin porous sheet: Applications to flow dynamics of the circulatory system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 330-344.
    4. Abdulhameed, M. & Muhammad, M.M. & Gital, A.Y. & Yakubu, D.G. & Khan, I., 2019. "Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 42-71.
    5. Ranjit, N.K. & Shit, G.C., 2017. "Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 458-476.
    6. Cesar A. Valencia & David A. Torres & Clara G. Hernández & Juan P. Escandón & Juan R. Gómez & René O. Vargas, 2023. "Start-Up Multilayer Electro-Osmotic Flow of Maxwell Fluids through an Annular Microchannel under Hydrodynamic Slip Conditions," Mathematics, MDPI, vol. 11(20), pages 1-29, October.
    7. Balaram Kundu & Sujit Saha, 2022. "Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels," Energies, MDPI, vol. 15(19), pages 1-51, September.
    8. Yaodong Da & Youxin Wang & Heming Dong & Qi Shang & Yu Zhang & Huashan Wang & Qian Du & Jianmin Gao, 2023. "Development of Carbon Nanotubes–Graphene–Polydimethylsiloxane Composite Film with Excellent Electrothermal Performance," Energies, MDPI, vol. 17(1), pages 1-17, December.
    9. Ranjit, N.K. & Shit, G.C., 2017. "Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment," Energy, Elsevier, vol. 128(C), pages 649-660.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2666-:d:1405688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.