IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7017-d923983.html
   My bibliography  Save this article

Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels

Author

Listed:
  • Balaram Kundu

    (Department of Mechanical Engineering, Jadavpur University, Raja S.C. Mallick Road, Kolkata 700032, India)

  • Sujit Saha

    (Department of Mechanical Engineering, Jadavpur University, Raja S.C. Mallick Road, Kolkata 700032, India)

Abstract

This paper aims to develop a review of the electrokinetic flow in microchannels. Thermal characteristics of electrokinetic phenomena in microchannels based on the Poisson–Boltzmann equation are presented rigorously by considering the Debye–Hückel approximation at a low zeta potential. Several researchers developed new mathematical models for high electrical potential with the electrical double layer (EDL). A literature survey was conducted to determine the velocity, temperature, Nusselt number, and volumetric flow rate by several analytical, numerical, and combinations along with different parameters. The momentum and energy equations govern these parameters with the influences of electric, magnetic, or both fields at various preconditions. The primary focus of this study is to summarize the literature rigorously on outcomes of electrokinetically driven flow in microchannels from the beginning to the present. The possible future scope of work highlights developing new mathematical analyses. This study also discusses the heat transport behavior of the electroosmotically driven flow in microchannels in view of no-slip, first-order slip, and second-order slip at the boundaries for the velocity distribution and no-jump, first-order thermal-slip, and second-order thermal-slip for the thermal response under maintaining a uniform wall-heat flux. Appropriate conditions are conferred elaborately to determine the velocity, temperature, and heat transport in the microchannel flow with the imposition of the pressure, electric, and magnetic forces. The effects of heat transfer on viscous dissipation, Joule heating, and thermal radiation envisage an advanced study for the fluid flow in microchannels. Finally, analytical steps highlighting different design aspects would help better understand the microchannel flow’s essential fundamentals in a single document. They enhance the knowledge of forthcoming developmental issues to promote the needed study area.

Suggested Citation

  • Balaram Kundu & Sujit Saha, 2022. "Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels," Energies, MDPI, vol. 15(19), pages 1-51, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7017-:d:923983
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kundu, Balaram, 2016. "Exact analysis for propagation of heat in a biological tissue subject to different surface conditions for therapeutic applications," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 204-216.
    2. Ranjit, N.K. & Shit, G.C., 2017. "Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment," Energy, Elsevier, vol. 128(C), pages 649-660.
    3. Xie, Zhi-Yong & Jian, Yong-Jun, 2017. "Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels," Energy, Elsevier, vol. 139(C), pages 1080-1093.
    4. Anber Saleem & Mishal Nayab Kiani & Sohail Nadeem & Salman Akhtar & Mehdi Ghalambaz & Alibek Issakhov, 2021. "Electroosmotically driven flow of micropolar bingham viscoplastic fluid in a wavy microchannel: application of computational biology stomach anatomy," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 24(3), pages 289-298, February.
    5. J. Villarroel-Schneider & Anders Malmquist & Joseph A. Araoz & J. Martí-Herrero & Andrew Martin, 2019. "Performance Analysis of a Small-Scale Biogas-Based Trigeneration Plant: An Absorption Refrigeration System Integrated to an Externally Fired Microturbine," Energies, MDPI, vol. 12(20), pages 1-30, October.
    6. Chee, Yi Shen & Ting, Tiew Wei & Hung, Yew Mun, 2015. "Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries," Energy, Elsevier, vol. 89(C), pages 382-401.
    7. Qian Sun & Yonghong Wu & Lishan Liu & B. Wiwatanapataphee, 2013. "Study of a Newtonian Fluid through Circular Channels with Slip Boundary Taking into Account Electrokinetic Effect," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, November.
    8. Jing Zhu & Pengfei Chu & Jiani Sui, 2018. "Exact Analytical Nanofluid Flow and Heat Transfer Involving Asymmetric Wall Heat Fluxes with Nonlinear Velocity Slip," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, September.
    9. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1040-1057.
    10. Peter A. Thompson & Sandra M. Troian, 1997. "A general boundary condition for liquid flow at solid surfaces," Nature, Nature, vol. 389(6649), pages 360-362, September.
    11. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotically driven MHD flow and heat transfer in micro-channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 437-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kin Lung Jerry Kan & Ka Wai Eric Cheng & Hai-Chen Zhuang, 2023. "Electric Analysis of the Maritime Application High-Frequency Magnetohydrodynamic Thruster," Energies, MDPI, vol. 16(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yongbo & Jian, Yongjun & Yang, Chunhong, 2020. "Electrochemomechanical energy conversion efficiency in curved rectangular nanochannels," Energy, Elsevier, vol. 198(C).
    2. Xie, Zhi-Yong & Jian, Yong-Jun, 2017. "Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels," Energy, Elsevier, vol. 139(C), pages 1080-1093.
    3. Misra, J.C. & Sinha, A. & Mallick, B., 2017. "Stagnation point flow and heat transfer on a thin porous sheet: Applications to flow dynamics of the circulatory system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 330-344.
    4. Ranjit, N.K. & Shit, G.C., 2017. "Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 458-476.
    5. Kalpana, G. & Madhura, K.R. & Kudenatti, Ramesh B., 2022. "Numerical study on the combined effects of Brownian motion and thermophoresis on an unsteady magnetohydrodynamics nanofluid boundary layer flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 78-96.
    6. Anand, Vishal, 2014. "Slip law effects on heat transfer and entropy generation of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition," Energy, Elsevier, vol. 76(C), pages 716-732.
    7. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Gheorghe Dumitrașcu & Michel Feidt & Ştefan Grigorean, 2021. "Finite Physical Dimensions Thermodynamics Analysis and Design of Closed Irreversible Cycles," Energies, MDPI, vol. 14(12), pages 1-19, June.
    9. Angela Camacho de la Rosa & David Becerril & María Guadalupe Gómez-Farfán & Raúl Esquivel-Sirvent, 2021. "Bragg Mirrors for Thermal Waves," Energies, MDPI, vol. 14(22), pages 1-11, November.
    10. Haroon Ur Rasheed & Zeeshan Khan & Saeed Islam & Ilyas Khan & Juan L. G. Guirao & Waris Khan, 2019. "Investigation of Two-Dimensional Viscoelastic Fluid with Nonuniform Heat Generation over Permeable Stretching Sheet with Slip Condition," Complexity, Hindawi, vol. 2019, pages 1-8, December.
    11. Mazhar Hussain Tiwana & Amer Bilal Mann & Muhammad Rizwan & Khadija Maqbool & Shumaila Javeed & Saqlain Raza & Mansoor Shaukat Khan, 2019. "Unsteady Magnetohydrodynamic Convective Fluid Flow of Oldroyd-B Model Considering Ramped Wall Temperature and Ramped Wall Velocity," Mathematics, MDPI, vol. 7(8), pages 1-14, July.
    12. Nazeer, Mubbashar & Hussain, Farooq & Khan, M. Ijaz & Asad-ur-Rehman, & El-Zahar, Essam Roshdy & Chu, Yu-Ming & Malik, M.Y., 2022. "Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    13. Jun Niu & Ceji Fu & Wenchang Tan, 2012. "Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    14. Wu, Yong Hong & Wiwatanapataphee, B. & Hu, Maobin, 2008. "Pressure-driven transient flows of Newtonian fluids through microtubes with slip boundary," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 5979-5990.
    15. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    16. Bollas, Konstantinos & Banihabib, Reyhaneh & Assadi, Mohsen & Kalfas, Anestis, 2024. "Optimal operating scenario and performance comparison of biomass-fueled externally-fired microturbine," Energy, Elsevier, vol. 296(C).
    17. Yunmin Ran & Volfango Bertola, 2024. "Achievements and Prospects of Molecular Dynamics Simulations in Thermofluid Sciences," Energies, MDPI, vol. 17(4), pages 1-30, February.
    18. Samuel O. Adesanya & J. A. Falade & J. C. Ukaegbu & K. S. Adekeye, 2016. "Mathematical Analysis of a Reactive Viscous Flow through a Channel Filled with a Porous Medium," Journal of Mathematics, Hindawi, vol. 2016, pages 1-8, December.
    19. Aurore Quelennec & Jason J. Gorman & Darwin R. Reyes, 2022. "Amontons-Coulomb-like slip dynamics in acousto-microfluidics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Khan, Mair & Shahid, Amna & Salahuddin, T. & Malik, M.Y. & Hussain, Arif, 2020. "Analysis of two dimensional Carreau fluid flow due to normal surface condition: A generalized Fourier’s and Fick’s laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7017-:d:923983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.