IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v465y2017icp690-700.html
   My bibliography  Save this article

Scale-free and small-world properties of Sierpinski networks

Author

Listed:
  • Wang, Songjing
  • Xi, Lifeng
  • Xu, Hui
  • Wang, Lihong

Abstract

In this paper, we construct the evolving networks from Sierpinski carpet, using the encoding approach in fractal geometry. We consider the small similar copies of unit square as nodes of network, where two nodes are neighbors if and only if their corresponding copies have common surface. For our networks, we check their scale-free and small-world effect by the self-similar structures, the exponent of power-law on degree distribution is log38 which is the Hausdorff dimension of the carpet.

Suggested Citation

  • Wang, Songjing & Xi, Lifeng & Xu, Hui & Wang, Lihong, 2017. "Scale-free and small-world properties of Sierpinski networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 690-700.
  • Handle: RePEc:eee:phsmap:v:465:y:2017:i:c:p:690-700
    DOI: 10.1016/j.physa.2016.08.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116305933
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.08.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    2. Guan, Jihong & Wu, Yuewen & Zhang, Zhongzhi & Zhou, Shuigeng & Wu, Yonghui, 2009. "A unified model for Sierpinski networks with scale-free scaling and small-world effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2571-2578.
    3. Chen, Renxia & Fu, Xinchu & Wu, Qingchu, 2012. "On topological properties of the octahedral Koch network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 880-886.
    4. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    5. Zhongzhi Zhang & Shuigeng Zhou & Zhan Su & Tao Zou & Jihong Guan, 2008. "Random Sierpinski network with scale-free small-world and modular structure," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(1), pages 141-147, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    2. Niu, Min & Song, Shuaishuai, 2018. "Scaling of average weighted shortest path and average receiving time on the weighted Cayley networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 707-717.
    3. Huang, Liang & Zheng, Yu, 2023. "Asymptotic formula on APL of fractal evolving networks generated by Durer Pentagon," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    5. Dai, Meifeng & Dai, Changxi & Ju, Tingting & Shen, Junjie & Sun, Yu & Su, Weiyi, 2019. "Mean first-passage times for two biased walks on the weighted rose networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 268-278.
    6. Zeng, Cheng & Xue, Yumei & Huang, Yuke, 2021. "Fractal networks with Sturmian structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    7. Dai, Meifeng & Feng, Wenjing & Wu, Xianbin & Chi, Huijia & Li, Peng & Su, Weiyi, 2019. "The Laplacian spectrum and average trapping time for weighted Dyson hierarchical network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 510-518.
    8. Fan, Jiaqi & Zhu, Jiali & Tian, Li & Wang, Qin, 2020. "Resistance Distance in Potting Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. He, Jia & Xue, Yumei, 2018. "Scale-free and small-world properties of hollow cube networks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 11-15.
    10. Sun, Jun-yan & Tang, Jian-ming & Fu, Wei-ping & Wu, Bing-ying, 2017. "Hybrid modeling and empirical analysis of automobile supply chain network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 377-389.
    11. Zong, Yue & Dai, Meifeng & Wang, Xiaoqian & He, Jiaojiao & Zou, Jiahui & Su, Weiyi, 2018. "Network coherence and eigentime identity on a family of weighted fractal networks," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 184-194.
    12. Ma, Fei & Wang, Ping & Yao, Bing, 2021. "Random walks on Fibonacci treelike models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Ma, Fei & Yao, Bing, 2017. "The relations between network-operation and topological-property in a scale-free and small-world network with community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 182-193.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Liang & Zheng, Yu, 2023. "Asymptotic formula on APL of fractal evolving networks generated by Durer Pentagon," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Le, Anbo & Gao, Fei & Xi, Lifeng & Yin, Shuhua, 2015. "Complex networks modeled on the Sierpinski gasket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 646-657.
    3. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    4. Zeng, Cheng & Xue, Yumei & Huang, Yuke, 2021. "Fractal networks with Sturmian structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    5. Carletti, Timoteo & Righi, Simone, 2010. "Weighted Fractal Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2134-2142.
    6. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    7. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    8. He, Jia & Xue, Yumei, 2018. "Scale-free and small-world properties of hollow cube networks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 11-15.
    9. Ye, Dandan & Dai, Meifeng & Sun, Yu & Su, Weiyi, 2017. "Average weighted receiving time on the non-homogeneous double-weighted fractal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 390-402.
    10. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    11. Ikeda, Nobutoshi, 2020. "Fractal networks induced by movements of random walkers on a tree graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    14. Zhang, Qi & Luo, Chuanhai & Li, Meizhu & Deng, Yong & Mahadevan, Sankaran, 2015. "Tsallis information dimension of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 707-717.
    15. Aldrich, Preston R. & El-Zabet, Jermeen & Hassan, Seerat & Briguglio, Joseph & Aliaj, Enela & Radcliffe, Maria & Mirza, Taha & Comar, Timothy & Nadolski, Jeremy & Huebner, Cynthia D., 2015. "Monte Carlo tests of small-world architecture for coarse-grained networks of the United States railroad and highway transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 32-39.
    16. Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    17. Xi, Lifeng & Wang, Lihong & Wang, Songjing & Yu, Zhouyu & Wang, Qin, 2017. "Fractality and scale-free effect of a class of self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 31-40.
    18. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    19. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    20. Rosenberg, Eric, 2018. "Generalized Hausdorff dimensions of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:465:y:2017:i:c:p:690-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.