IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v167y2023ics0960077922012218.html
   My bibliography  Save this article

Asymptotic formula on APL of fractal evolving networks generated by Durer Pentagon

Author

Listed:
  • Huang, Liang
  • Zheng, Yu

Abstract

Complex networks constructed by fractals have many applications in many fields, such as the data center networks and fractal antennas. In this paper, we consider a kind of evolving networks modeled on the classical fractal, Durer Pentagon, whose nodes are all the solid pentagons in the construction of Durer Pentagon up to stage t. In this network, two nodes are neighbors if and only if the intersection of their corresponding pentagons is a line segment. Using self-similarity and renewal theorem, we obtain the asymptotic formula on average path length (APL) of our evolving network.

Suggested Citation

  • Huang, Liang & Zheng, Yu, 2023. "Asymptotic formula on APL of fractal evolving networks generated by Durer Pentagon," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922012218
    DOI: 10.1016/j.chaos.2022.113042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922012218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.113042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    2. Guan, Jihong & Wu, Yuewen & Zhang, Zhongzhi & Zhou, Shuigeng & Wu, Yonghui, 2009. "A unified model for Sierpinski networks with scale-free scaling and small-world effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2571-2578.
    3. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    4. Chen, Renxia & Fu, Xinchu & Wu, Qingchu, 2012. "On topological properties of the octahedral Koch network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 880-886.
    5. S. Condamin & O. Bénichou & V. Tejedor & R. Voituriez & J. Klafter, 2007. "First-passage times in complex scale-invariant media," Nature, Nature, vol. 450(7166), pages 77-80, November.
    6. Le, Anbo & Gao, Fei & Xi, Lifeng & Yin, Shuhua, 2015. "Complex networks modeled on the Sierpinski gasket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 646-657.
    7. Wang, Songjing & Xi, Lifeng & Xu, Hui & Wang, Lihong, 2017. "Scale-free and small-world properties of Sierpinski networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 690-700.
    8. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    9. Zhongzhi Zhang & Shuigeng Zhou & Zhan Su & Tao Zou & Jihong Guan, 2008. "Random Sierpinski network with scale-free small-world and modular structure," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(1), pages 141-147, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le, Anbo & Gao, Fei & Xi, Lifeng & Yin, Shuhua, 2015. "Complex networks modeled on the Sierpinski gasket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 646-657.
    2. Zeng, Cheng & Xue, Yumei & Huang, Yuke, 2021. "Fractal networks with Sturmian structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    3. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    4. Wang, Songjing & Xi, Lifeng & Xu, Hui & Wang, Lihong, 2017. "Scale-free and small-world properties of Sierpinski networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 690-700.
    5. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    6. He, Jia & Xue, Yumei, 2018. "Scale-free and small-world properties of hollow cube networks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 11-15.
    7. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    8. Niu, Min & Song, Shuaishuai, 2018. "Scaling of average weighted shortest path and average receiving time on the weighted Cayley networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 707-717.
    9. Carletti, Timoteo & Righi, Simone, 2010. "Weighted Fractal Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2134-2142.
    10. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    11. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    12. Ma, Fei & Yao, Bing, 2017. "The relations between network-operation and topological-property in a scale-free and small-world network with community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 182-193.
    13. Ma, Fei & Wang, Ping & Yao, Bing, 2021. "Random walks on Fibonacci treelike models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    14. Li, Heyang & Zeng, An, 2022. "Improving recommendation by connecting user behavior in temporal and topological dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    15. Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    16. Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.
    17. Ye, Dandan & Dai, Meifeng & Sun, Yu & Su, Weiyi, 2017. "Average weighted receiving time on the non-homogeneous double-weighted fractal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 390-402.
    18. Ma, Fei & Wang, Ping, 2024. "Understanding influence of fractal generative manner on structural properties of tree networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    19. Fan, Jiaqi & Zhu, Jiali & Tian, Li & Wang, Qin, 2020. "Resistance Distance in Potting Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Zong, Yue & Dai, Meifeng & Wang, Xiaoqian & He, Jiaojiao & Zou, Jiahui & Su, Weiyi, 2018. "Network coherence and eigentime identity on a family of weighted fractal networks," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 184-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922012218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.