IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v581y2021ics0378437121004726.html
   My bibliography  Save this article

Random walks on Fibonacci treelike models

Author

Listed:
  • Ma, Fei
  • Wang, Ping
  • Yao, Bing

Abstract

In this paper, we propose a class of growth models, named Fibonacci trees F(t), with respect to the nature of Fibonacci sequence {Ft}. First, we show that models F(t) have power-law degree distribution with exponent greater than 3. Then, we analytically study two significant topological indices, i.e., optimal mean first-passage time (OMFPT) and mean first-passage time (MFPT), for random walks on Fibonacci trees F(t), and obtain the analytical expressions using some combinatorial approaches. The methods used are widely applied for other network models with self-similar feature to derive analytical solution to OMFPT or MFPT, and we select a candidate model to validate this viewpoint. In addition, we observe from theoretical analysis and numerical simulation that the scaling of MFPT is linearly correlated with vertex number of models F(t), and show that Fibonacci trees F(t) possess more optimal topological structure than the classic scale-free tree networks.

Suggested Citation

  • Ma, Fei & Wang, Ping & Yao, Bing, 2021. "Random walks on Fibonacci treelike models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  • Handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004726
    DOI: 10.1016/j.physa.2021.126199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121004726
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Fei & Wang, Ping & Yao, Bing, 2019. "Generating Fibonacci-model as evolution of networks with vertex-velocity and time-memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    2. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    3. Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.
    4. Wang, Songjing & Xi, Lifeng & Xu, Hui & Wang, Lihong, 2017. "Scale-free and small-world properties of Sierpinski networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 690-700.
    5. Hu, Ping & Mei, Ting, 2018. "Ranking influential nodes in complex networks with structural holes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 624-631.
    6. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    7. Fei Ma & Jing Su & Bing Yao, 2018. "A recursive method for calculating the total number of spanning trees and its applications in self-similar small-world scale-free network models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Liang & Zheng, Yu, 2023. "Asymptotic formula on APL of fractal evolving networks generated by Durer Pentagon," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    3. Niu, Min & Song, Shuaishuai, 2018. "Scaling of average weighted shortest path and average receiving time on the weighted Cayley networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 707-717.
    4. Zeng, Cheng & Xue, Yumei & Huang, Yuke, 2021. "Fractal networks with Sturmian structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    5. Zong, Yue & Dai, Meifeng & Wang, Xiaoqian & He, Jiaojiao & Zou, Jiahui & Su, Weiyi, 2018. "Network coherence and eigentime identity on a family of weighted fractal networks," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 184-194.
    6. He, Jia & Xue, Yumei, 2018. "Scale-free and small-world properties of hollow cube networks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 11-15.
    7. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    8. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    9. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    10. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    13. Yuan, Guanghui & Han, Jingti & Zhou, Lei & Liang, Hejun & Zhang, Yicheng, 2019. "Supply and demand law under variable information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Zhijun SONG & Linjun YU, 2019. "Multifractal features of spatial variation in construction land in Beijing (1985–2015)," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.
    15. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    16. Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.
    17. Xuzhen Zhu & Jinming Ma & Xin Su & Hui Tian & Wei Wang & Shimin Cai, 2019. "Information Spreading on Weighted Multiplex Social Network," Complexity, Hindawi, vol. 2019, pages 1-15, November.
    18. Lia Papadopoulos & Pablo Blinder & Henrik Ronellenfitsch & Florian Klimm & Eleni Katifori & David Kleinfeld & Danielle S Bassett, 2018. "Comparing two classes of biological distribution systems using network analysis," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    19. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    20. Ikeda, Nobutoshi, 2020. "Fractal networks induced by movements of random walkers on a tree graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.