IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v461y2016icp480-486.html
   My bibliography  Save this article

Popularity and user diversity of online objects

Author

Listed:
  • Wang, Jia-Hua
  • Guo, Qiang
  • Yang, Kai
  • Zhang, Yi-Lu
  • Han, Jingti
  • Liu, Jian-Guo

Abstract

The popularity has been widely used to describe the object property of online user–object bipartite networks regardless of the user characteristics. In this paper, we introduce a measurement namely user diversity to measure diversity of users who select or rate one type of objects by using the information entropy. We empirically calculate the user diversity of objects with specific degree for both MovieLens and Diggs data sets. The results indicate that more types of users select normal-degree objects than those who select large-degree and small-degree objects. Furthermore, small-degree objects are usually selected by large-degree users while large-degree objects are usually selected by small-degree users. Moreover, we define 15% objects of smallest degrees as unpopular objects and 10% ones of largest degrees as popular objects. The timestamp is introduced to help further analyze the evolution of user diversity of popular objects and unpopular objects. The dynamic analysis shows that as objects become popular gradually, they are more likely accepted by small-degree users but lose attention among the large-degree users.

Suggested Citation

  • Wang, Jia-Hua & Guo, Qiang & Yang, Kai & Zhang, Yi-Lu & Han, Jingti & Liu, Jian-Guo, 2016. "Popularity and user diversity of online objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 480-486.
  • Handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:480-486
    DOI: 10.1016/j.physa.2016.06.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116303041
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.06.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ni, Jing & Zhang, Yi-Lu & Hu, Zhao-Long & Song, Wen-Jun & Hou, Lei & Guo, Qiang & Liu, Jian-Guo, 2014. "Ceiling effect of online user interests for the movies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 134-140.
    2. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    3. Lei Ji & Jian-Guo Liu & Lei Hou & Qiang Guo, 2015. "Identifying the Role of Common Interests in Online User Trust Formation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    4. Zhang, Yi-Lu & Guo, Qiang & Ni, Jing & Liu, Jian-Guo, 2015. "Memory effect of the online rating for movies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 261-266.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Sheng-Nan & Guo, Qiang & Yang, Kai & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Uncovering the popularity mechanisms for Facebook applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 422-429.
    2. Wu, Ying-Ying & Guo, Qiang & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Effect of the initial configuration for user–object reputation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 288-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Lu & Guo, Qiang & Liu, Xiao-Lu & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Identifying online user reputation in terms of user preference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 403-409.
    2. Wang, Ximeng & Liu, Yun & Xiong, Fei, 2016. "Improved personalized recommendation based on a similarity network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 271-280.
    3. Guo, Xin-Yu & Guo, Qiang & Li, Ren-De & Liu, Jian-Guo, 2018. "Long-term memory of rating behaviors for the online trust formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 254-264.
    4. Li, Sheng-Nan & Guo, Qiang & Yang, Kai & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Uncovering the popularity mechanisms for Facebook applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 422-429.
    5. Zhang, Yi-Lu & Guo, Qiang & Ni, Jing & Liu, Jian-Guo, 2015. "Memory effect of the online rating for movies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 261-266.
    6. Mahesh Balan U & Saji K. Mathew, 2021. "Personalize, Summarize or Let them Read? A Study on Online Word of Mouth Strategies and Consumer Decision Process," Information Systems Frontiers, Springer, vol. 23(3), pages 627-647, June.
    7. Duan, Yongrui & Liu, Tonghui & Mao, Zhixin, 2022. "How online reviews and coupons affect sales and pricing: An empirical study based on e-commerce platform," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    8. Wang, Yan & Yang, Jian & Qi, Lian, 2017. "A game-theoretic model for the role of reputation feedback systems in peer-to-peer commerce," International Journal of Production Economics, Elsevier, vol. 191(C), pages 178-193.
    9. Bella Rozenkrants & S Christian Wheeler & Baba Shiv & Gita JoharEditor & Derek RuckerAssociate Editor, 2017. "Self-Expression Cues in Product Rating Distributions: When People Prefer Polarizing Products," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(4), pages 759-777.
    10. Sungsik Park & Woochoel Shin & Jinhong Xie, 2021. "The Fateful First Consumer Review," Marketing Science, INFORMS, vol. 40(3), pages 481-507, May.
    11. Yabing Jiang & Hong Guo, 2012. "Design of Consumer Review Systems and Product Pricing," Working Papers 12-10, NET Institute.
    12. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    13. Li, Yimeng & Xiong, Yu & Mariuzzo, Franco & Xia, Senmao, 2021. "The underexplored impacts of online consumer reviews: Pricing and new product design strategies in the O2O supply chain," International Journal of Production Economics, Elsevier, vol. 237(C).
    14. Back, Camila & Spann, Martin, 2022. "The Impact of Uncertainty on Customer Satisfaction," Rationality and Competition Discussion Paper Series 343, CRC TRR 190 Rationality and Competition.
    15. Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
    16. Wang, Feng & Liu, Xuefeng & Fang, Eric (Er), 2015. "User Reviews Variance, Critic Reviews Variance, and Product Sales: An Exploration of Customer Breadth and Depth Effects," Journal of Retailing, Elsevier, vol. 91(3), pages 372-389.
    17. Hu, Xin & He, Liuyi & Liu, Junjun, 2022. "Status reinforcing: Unintended rating bias on online shopping platforms," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    18. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    19. Rutz, Oliver & Aravindakshan, Ashwin & Rubel, Olivier, 2019. "Measuring and forecasting mobile game app engagement," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 185-199.
    20. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:480-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.