IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v494y2018icp422-429.html
   My bibliography  Save this article

Uncovering the popularity mechanisms for Facebook applications

Author

Listed:
  • Li, Sheng-Nan
  • Guo, Qiang
  • Yang, Kai
  • Liu, Jian-Guo
  • Zhang, Yi-Cheng

Abstract

Understanding the popularity dynamics of online application(App) is significant for the online social systems. In this paper, by dividing the Facebook Apps into different groups in terms of their popularities, we empirically investigate the popularity dynamics for different kinds of Facebook Apps. Then, taking into account the influence of cumulative and recent popularities on the user choice, we present a model to regenerate the growth of popularity for different App groups. The experimental results of 917 Facebook Apps show that as the popularities of Facebook Apps increase, the recent popularity plays more important role. Specifically, the recent popularity plays more important role in regenerating the popularity dynamics for more popular Apps, and the cumulative popularity plays more important role for unpopular Apps. We also conduct temporal analysis on the growth characteristic of individual App by comparing the increment at each time with the average of historical records. The results show that the growth of more popular App tends to fluctuate more greatly. Our work may shed some lights for deeply understanding the popularity mechanism for online applications.

Suggested Citation

  • Li, Sheng-Nan & Guo, Qiang & Yang, Kai & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Uncovering the popularity mechanisms for Facebook applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 422-429.
  • Handle: RePEc:eee:phsmap:v:494:y:2018:i:c:p:422-429
    DOI: 10.1016/j.physa.2017.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117312499
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ni, Jing & Zhang, Yi-Lu & Hu, Zhao-Long & Song, Wen-Jun & Hou, Lei & Guo, Qiang & Liu, Jian-Guo, 2014. "Ceiling effect of online user interests for the movies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 134-140.
    2. Lei Ji & Jian-Guo Liu & Lei Hou & Qiang Guo, 2015. "Identifying the Role of Common Interests in Online User Trust Formation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    3. Wang, Jia-Hua & Guo, Qiang & Yang, Kai & Zhang, Yi-Lu & Han, Jingti & Liu, Jian-Guo, 2016. "Popularity and user diversity of online objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 480-486.
    4. Liu, Xiao-Lu & Guo, Qiang & Hou, Lei & Cheng, Can & Liu, Jian-Guo, 2015. "Ranking online quality and reputation via the user activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 629-636.
    5. Jianguo Liu & Lei Hou & Yi-Lu Zhang & Wen-Jun Song & Xue Pan, 2013. "Empirical Analysis Of The Clustering Coefficient In The User-Object Bipartite Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(08), pages 1-10.
    6. Li-Ying Tang & Sheng-Nan Li & Jian-Hong Lin & Qiang Guo & Jian-Guo Liu, 2016. "Community structure detection based on the neighbor node degree information," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(04), pages 1-11, April.
    7. Zan Huang & Daniel D. Zeng & Hsinchun Chen, 2007. "Analyzing Consumer-Product Graphs: Empirical Findings and Applications in Recommender Systems," Management Science, INFORMS, vol. 53(7), pages 1146-1164, July.
    8. Ren, Zhuo-Ming & Shi, Yu-Qiang & Liao, Hao, 2016. "Characterizing popularity dynamics of online videos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 236-241.
    9. Robert M. Bond & Christopher J. Fariss & Jason J. Jones & Adam D. I. Kramer & Cameron Marlow & Jaime E. Settle & James H. Fowler, 2012. "A 61-million-person experiment in social influence and political mobilization," Nature, Nature, vol. 489(7415), pages 295-298, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanbo Zhou & Hongbing Cheng & Qu Li & Weihong Wang, 2020. "Diversity of temporal influence in popularity prediction of scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 383-392, April.
    2. Liu, Jian-Guo & Yang, Zhen-Hua & Li, Sheng-Nan & Yu, Chang-Rui, 2018. "A generative model for the collective attention of the Chinese stock market investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1175-1182.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi-Lu & Guo, Qiang & Ni, Jing & Liu, Jian-Guo, 2015. "Memory effect of the online rating for movies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 261-266.
    2. Wu, Ying-Ying & Guo, Qiang & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Effect of the initial configuration for user–object reputation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 288-294.
    3. Wang, Jia-Hua & Guo, Qiang & Yang, Kai & Zhang, Yi-Lu & Han, Jingti & Liu, Jian-Guo, 2016. "Popularity and user diversity of online objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 480-486.
    4. Dai, Lu & Guo, Qiang & Liu, Xiao-Lu & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Identifying online user reputation in terms of user preference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 403-409.
    5. Hou, Lei & Liu, Kecheng & Liu, Jianguo & Zhang, Runtong, 2017. "Solving the stability–accuracy–diversity dilemma of recommender systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 415-424.
    6. Liu, Xiao-Lu & Liu, Jian-Guo & Yang, Kai & Guo, Qiang & Han, Jing-Ti, 2017. "Identifying online user reputation of user–object bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 508-516.
    7. Leilei Wu & Zhuoming Ren & Xiao-Long Ren & Jianlin Zhang & Linyuan Lü, 2018. "Eliminating the Effect of Rating Bias on Reputation Systems," Complexity, Hindawi, vol. 2018, pages 1-11, February.
    8. Jong-Seok Lee & Dan Zhu, 2012. "Shilling Attack Detection---A New Approach for a Trustworthy Recommender System," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 117-131, February.
    9. Johnson, Nathan & Turnbull, Benjamin & Reisslein, Martin, 2022. "Social media influence, trust, and conflict: An interview based study of leadership perceptions," Technology in Society, Elsevier, vol. 68(C).
    10. Alan Gerber & Mitchell Hoffman & John Morgan & Collin Raymond, 2020. "One in a Million: Field Experiments on Perceived Closeness of the Election and Voter Turnout," American Economic Journal: Applied Economics, American Economic Association, vol. 12(3), pages 287-325, July.
    11. Kenju Kamei & Louis Putterman & Jean-Robert Tyran, 2019. "Civic Engagement as a Second-Order Public Good: The Cooperative Underpinnings of the Accountable State," Discussion Papers 19-10, University of Copenhagen. Department of Economics.
    12. Ruyi Ge & Juan Feng & Bin Gu, 2016. "Borrower’s default and self-disclosure of social media information in P2P lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-6, December.
    13. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    14. Gu, Ke & Fan, Ying & Di, Zengru, 2020. "How to predict recommendation lists that users do not like," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    15. Kristina Gavin Bigsby & Jeffrey W. Ohlmann & Kang Zhao, 2017. "Online and Off the Field: Predicting School Choice in College Football Recruiting from Social Media Data," Decision Analysis, INFORMS, vol. 14(4), pages 261-273, December.
    16. Yann Algan & Quoc-Anh Do & Nicolò Dalvit & Alexis Le Chapelain & Yves Zenou, 2015. "How Social Networks Shape Our Beliefs: A Natural Experiment among Future French Politicians," Working Papers hal-03459820, HAL.
    17. Mechtenberg, Lydia & Tyran, Jean-Robert, 2019. "Voter motivation and the quality of democratic choice," Games and Economic Behavior, Elsevier, vol. 116(C), pages 241-259.
    18. Daniele Barchiesi & Helen Susannah Moat & Christian Alis & Steven Bishop & Tobias Preis, 2015. "Quantifying International Travel Flows Using Flickr," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-8, July.
    19. repec:spo:wpmain:info:hdl:2441/78vacv4udu92eq3fec89svm9uv is not listed on IDEAS
    20. Carolin V. Zorell, 2020. "Nudges, Norms, or Just Contagion? A Theory on Influences on the Practice of (Non-)Sustainable Behavior," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    21. Julian Freitag & Anna Kerkhof & Johannes Münster, 2021. "Selective sharing of news items and the political position of news outlets," ECONtribute Discussion Papers Series 056, University of Bonn and University of Cologne, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:494:y:2018:i:c:p:422-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.