IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v456y2016icp271-280.html
   My bibliography  Save this article

Improved personalized recommendation based on a similarity network

Author

Listed:
  • Wang, Ximeng
  • Liu, Yun
  • Xiong, Fei

Abstract

A recommender system helps individual users find the preferred items rapidly and has attracted extensive attention in recent years. Many successful recommendation algorithms are designed on bipartite networks, such as network-based inference or heat conduction. However, most of these algorithms define the resource-allocation methods for an average allocation. That is not reasonable because average allocation cannot indicate the user choice preference and the influence between users which leads to a series of non-personalized recommendation results. We propose a personalized recommendation approach that combines the similarity function and bipartite network to generate a similarity network that improves the resource-allocation process. Our model introduces user influence into the recommender system and states that the user influence can make the resource-allocation process more reasonable. We use four different metrics to evaluate our algorithms for three benchmark data sets. Experimental results show that the improved recommendation on a similarity network can obtain better accuracy and diversity than some competing approaches.

Suggested Citation

  • Wang, Ximeng & Liu, Yun & Xiong, Fei, 2016. "Improved personalized recommendation based on a similarity network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 271-280.
  • Handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:271-280
    DOI: 10.1016/j.physa.2016.03.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300681
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Yuan & Liu, Yun & Zhang, Zhen-Jiang & Xiong, Fei & Cao, Wei, 2014. "Compare two community-based personalized information recommendation algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 199-209.
    2. Wang, Yong-Li & Zhou, Tao & Shi, Jian-Jun & Wang, Jian & He, Da-Ren, 2009. "Empirical analysis of dependence between stations in Chinese railway network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2949-2955.
    3. Ni, Jing & Zhang, Yi-Lu & Hu, Zhao-Long & Song, Wen-Jun & Hou, Lei & Guo, Qiang & Liu, Jian-Guo, 2014. "Ceiling effect of online user interests for the movies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 134-140.
    4. Zhang, Cheng-Jun & Zeng, An, 2012. "Behavior patterns of online users and the effect on information filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1822-1830.
    5. Jin-Hu Liu & Tao Zhou & Zi-Ke Zhang & Zimo Yang & Chuang Liu & Wei-Min Li, 2014. "Promoting Cold-Start Items in Recommender Systems," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-13, December.
    6. Zhang, Yi-Lu & Guo, Qiang & Ni, Jing & Liu, Jian-Guo, 2015. "Memory effect of the online rating for movies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 261-266.
    7. Zhang, Chu-Xu & Zhang, Zi-Ke & Yu, Lu & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Information filtering via collaborative user clustering modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 195-203.
    8. Lian, Jie & Liu, Yun & Zhang, Zhen-jiang & Gui, Chang-ni, 2013. "Personalized recommendation via an improved NBI algorithm and user influence model in a Microblog network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4594-4605.
    9. Wei Zeng & An Zeng & Hao Liu & Ming-Sheng Shang & Yi-Cheng Zhang, 2014. "Similarity from Multi-Dimensional Scaling: Solving the Accuracy and Diversity Dilemma in Information Filtering," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
    10. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoyi Li & Fei Xiong & Ximeng Wang & Hongshu Chen & Xi Xiong, 2019. "Topological Influence-Aware Recommendation on Social Networks," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    2. Zongtao Duan & Lei Tang & Xuehui Gong & Yishui Zhu, 2018. "Personalized service recommendations for travel using trajectory pattern discovery," International Journal of Distributed Sensor Networks, , vol. 14(3), pages 15501477187, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi-Lu & Guo, Qiang & Ni, Jing & Liu, Jian-Guo, 2015. "Memory effect of the online rating for movies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 261-266.
    2. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    3. Liu, Jin-Hu & Zhu, Yu-Xiao & Zhou, Tao, 2016. "Improving personalized link prediction by hybrid diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 199-207.
    4. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    5. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    6. An, Ya-Hui & Dong, Qiang & Sun, Chong-Jing & Nie, Da-Cheng & Fu, Yan, 2016. "Diffusion-like recommendation with enhanced similarity of objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 708-715.
    7. Gao, Jian & Zhou, Tao, 2017. "Evaluating user reputation in online rating systems via an iterative group-based ranking method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 546-560.
    8. Wen, Yuan & Liu, Yun & Zhang, Zhen-Jiang & Xiong, Fei & Cao, Wei, 2014. "Compare two community-based personalized information recommendation algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 199-209.
    9. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    10. Wang, Jia-Hua & Guo, Qiang & Yang, Kai & Zhang, Yi-Lu & Han, Jingti & Liu, Jian-Guo, 2016. "Popularity and user diversity of online objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 480-486.
    11. Dai, Lu & Guo, Qiang & Liu, Xiao-Lu & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Identifying online user reputation in terms of user preference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 403-409.
    12. Song, Wen-Jun & Guo, Qiang & Liu, Jian-Guo, 2014. "Improved hybrid information filtering based on limited time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 192-197.
    13. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    14. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    16. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    17. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    18. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    19. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    20. Yichi Zhang & Zhiliang Dong & Sen Liu & Peixiang Jiang & Cuizhi Zhang & Chao Ding, 2021. "Forecast of International Trade of Lithium Carbonate Products in Importing Countries and Small-Scale Exporting Countries," Sustainability, MDPI, vol. 13(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:271-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.