IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v94y2013icp310-328.html
   My bibliography  Save this article

Extreme market risk and extreme value theory

Author

Listed:
  • Singh, Abhay K.
  • Allen, David E.
  • Robert, Powell J.

Abstract

The phenomenon of the occurrence of rare yet extreme events, “Black Swans” in Taleb's terminology, seems to be more apparent in financial markets around the globe. This means there is not only a need to design proper risk modelling techniques which can predict the probability of risky events in normal market conditions but also a requirement for tools which can assess the probabilities of rare financial events; like the recent global financial crisis (2007–2008). An obvious candidate, when dealing with extreme financial events and the quantification of extreme market risk is extreme value theory (EVT). This proves to be a natural statistical modelling technique of relevance. Extreme value theory provides well-established statistical models for the computation of extreme risk measures like the return level, value at risk and expected shortfall. In this paper we apply univariate extreme value theory to model extreme market risk for the ASX-All Ordinaries (Australian) index and the S&P-500 (USA) Index. We demonstrate that EVT can be successfully applied to financial market return series for predicting static VaR, CVaR or expected shortfall (ES) and expected return level and also daily VaR using a GARCH(1,1) and EVT based dynamic approach.

Suggested Citation

  • Singh, Abhay K. & Allen, David E. & Robert, Powell J., 2013. "Extreme market risk and extreme value theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 310-328.
  • Handle: RePEc:eee:matcom:v:94:y:2013:i:c:p:310-328
    DOI: 10.1016/j.matcom.2012.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475412001206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2012.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Center for Financial Institutions Working Papers 98-10, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    3. ROCKINGER, Michael & JONDEAU, Eric, 1999. "The Tail Behavior of Stock Returns: Emerging versus Mature Markets," HEC Research Papers Series 668, HEC Paris.
    4. Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
    5. Ibrahim Onour, "undated". "Extreme Risk and Fat-tails Distribution Model:Empirical Analysis," API-Working Paper Series 0911, Arab Planning Institute - Kuwait, Information Center.
    6. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    7. repec:adr:anecst:y:2000:i:60:p:10 is not listed on IDEAS
    8. Jon Danielsson & Casper G. De Vries, 2000. "Value-at-Risk and Extreme Returns," Annals of Economics and Statistics, GENES, issue 60, pages 239-270.
    9. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    10. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    11. Francis X. Diebold & Til Schuermann & John D. Stroughair, 2000. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 1(2), pages 30-35, January.
    12. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    13. Stuart G. Coles & Jonathan A. Tawn, 1994. "Statistical Methods for Multivariate Extremes: An Application to Structural Design," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 1-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David E. Giles & Qinlu Chen, 2014. "Risk Analysis for Three Precious Metals: An Application of Extreme Value Theory," Econometrics Working Papers 1402, Department of Economics, University of Victoria.
    2. Emmanuel Afuecheta & Chigozie Utazi & Edmore Ranganai & Chibuzor Nnanatu, 2023. "An Application of Extreme Value Theory for Measuring Financial Risk in BRICS Economies," Annals of Data Science, Springer, vol. 10(2), pages 251-290, April.
    3. Reboredo, Juan C. & Ugando, Mikel, 2015. "Downside risks in EU carbon and fossil fuel markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 111(C), pages 17-35.
    4. Chia-Lin Chang & David E. Allen & Michael McAleer & Ju-Ting Tang & Teodosio Pérez Amaral, 2013. "Risk Modelling and Management: An Overview," Documentos de Trabajo del ICAE 2013-22, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    5. Eduard Krkoska & Klaus Reiner Schenk-Hoppé, 2019. "Herding in Smart-Beta Investment Products," JRFM, MDPI, vol. 12(1), pages 1-14, March.
    6. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    7. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    8. Laudagé, Christian & Desmettre, Sascha & Wenzel, Jörg, 2019. "Severity modeling of extreme insurance claims for tariffication," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 77-92.
    9. Runjie Xu & Chuanmin Mi & Nan Ye & Tom Marshall & Yadong Xiao & Hefan Shuai, 2020. "Risk Fluctuation Characteristics of Internet Finance: Combining Industry Characteristics with Ecological Value," Papers 2001.09798, arXiv.org.
    10. Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allen, David E. & Singh, Abhay K. & Powell, Robert J., 2013. "EVT and tail-risk modelling: Evidence from market indices and volatility series," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 355-369.
    2. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    3. Bi, Guang & Giles, David E., 2009. "Modelling the financial risk associated with U.S. movie box office earnings," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2759-2766.
    4. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    5. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    6. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    7. Huang, Wei & Liu, Qianqiu & Ghon Rhee, S. & Wu, Feng, 2012. "Extreme downside risk and expected stock returns," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1492-1502.
    8. Ozaki, Vitor Augusto & Olinda, Ricardo & Faria, Priscila Neves & Campos, Rogério Costa, 2014. "Estimation of the Agricultural Probability of Loss: evidence for soybean in Paraná State," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 52(1), January.
    9. Evis Këllezi & Manfred Gilli, 2000. "Extreme Value Theory for Tail-Related Risk Measures," FAME Research Paper Series rp18, International Center for Financial Asset Management and Engineering.
    10. Ozaki, Vitor Augusto & Olinda, Ricardo & Faria, Priscila Neves & Campos, Rogerio Costa, 2014. "Estimation of the Agricultural Probability of Loss: evidence for soybean in Paraná Stats," Brazilian Journal of Rural Economy and Sociology (Revista de Economia e Sociologia Rural-RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 52(1), pages 1-16, March.
    11. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    12. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    13. Odening, Martin & Hinrichs, Jan, 2003. "Die Quantifizierung von Marktrisiken in der Tierproduktion mittels Value-at-Risk und Extreme-Value-Theory," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 52(02), pages 1-11.
    14. Riedel, Christoph & Wagner, Niklas, 2015. "Is risk higher during non-trading periods? The risk trade-off for intraday versus overnight market returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 53-64.
    15. Cerović Julija & Lipovina-Božović Milena & Vujošević Saša, 2015. "A Comparative Analysis of Value at Risk Measurement on Emerging Stock Markets: Case of Montenegro," Business Systems Research, Sciendo, vol. 6(1), pages 36-55, March.
    16. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2024. "Forecasting the effect of extreme sea-level rise on financial market risk," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 1-27.
    17. POON, Ser-Huang & ROCKINGER, Michael & TAWN, Jonathan, 2001. "New Extreme-Value Dependance Measures and Finance Applications," HEC Research Papers Series 719, HEC Paris.
    18. repec:czx:journl:v:19:y:2012:i:29:id:192 is not listed on IDEAS
    19. Odening, Martin & Hinrichs, Jan, 2002. "Assessment Of Market Risk In Hog Production Using Value-At-Risk And Extreme Value Theory," 2002 Annual meeting, July 28-31, Long Beach, CA 19907, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Sasa Zikovic & Randall Filer, 2009. "Hybrid Historical Simulation VaR and ES: Performance in Developed and Emerging Markets," CESifo Working Paper Series 2820, CESifo.
    21. Araújo Santos, Paulo & Fraga Alves, Isabel & Hammoudeh, Shawkat, 2013. "High quantiles estimation with Quasi-PORT and DPOT: An application to value-at-risk for financial variables," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 487-496.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:94:y:2013:i:c:p:310-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.