IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v21y2012icp64-69.html
   My bibliography  Save this article

A multiscale entropy approach for market efficiency

Author

Listed:
  • Alvarez-Ramirez, Jose
  • Rodriguez, Eduardo
  • Alvarez, Jesus

Abstract

Motivated by the recently evolutionary economic theories, we propose to study market efficiency from an informational entropy viewpoint. The basic idea is that, rather than being an all-or-none concept as in classic economic theories, market efficiency changes over time and over time horizons. Within this framework, market efficiency is measured in terms of the patterns contained in the price changes sequence relative to the patterns in a random sequence. In line with evolutionary finance ideas, the empirical results for the Dow Jones Index showed that the degree of market efficiency varies over time and is dependent of the time scale. In general, the DJI is more efficient for shorter (about days) than for longer (about months and quarters) time scales. On the other hand, the market efficiency exhibits a cyclic behavior with two dominant periods of about 4.5 and 22years. It is apparent that the 4.5-year cycle is related to inventory (Kitchin-type) effects, while the 22-year cycle to structure inversion (Kondriatev-type) cycles.

Suggested Citation

  • Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Alvarez, Jesus, 2012. "A multiscale entropy approach for market efficiency," International Review of Financial Analysis, Elsevier, vol. 21(C), pages 64-69.
  • Handle: RePEc:eee:finana:v:21:y:2012:i:c:p:64-69
    DOI: 10.1016/j.irfa.2011.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521911001013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2011.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Gabjin & Kim, Seunghwan & Eom, Cheoljun, 2007. "Market efficiency in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 209-212.
    2. Burton Malkiel & Sendhil Mullainathan & Bruce Stangle, 2005. "Market Efficiency versus Behavioral Finance," Journal of Applied Corporate Finance, Morgan Stanley, vol. 17(3), pages 124-136, June.
    3. J. Doyne Farmer & Andrew W. Lo, 1999. "Frontiers of Finance: Evolution and Efficient Markets," Working Papers 99-06-039, Santa Fe Institute.
    4. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    5. Les Gulko, 1999. "The Entropic Market Hypothesis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 293-329.
    6. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    7. Jeremy C. Stein, 2009. "Presidential Address: Sophisticated Investors and Market Efficiency," Journal of Finance, American Finance Association, vol. 64(4), pages 1517-1548, August.
    8. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    9. Risso, Wiston Adrián, 2008. "The informational efficiency and the financial crashes," Research in International Business and Finance, Elsevier, vol. 22(3), pages 396-408, September.
    10. Ito, Mikio & Sugiyama, Shunsuke, 2009. "Measuring the degree of time varying market inefficiency," Economics Letters, Elsevier, vol. 103(1), pages 62-64, April.
    11. repec:ebl:ecbull:v:7:y:2008:i:6:p:1-12 is not listed on IDEAS
    12. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    13. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    14. Sergio Da Silva & Raul Matsushita & Ricardo Giglio, 2008. "The relative efficiency of stockmarkets," Economics Bulletin, AccessEcon, vol. 7(6), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurelio F. Bariviera & Luciano Zunino & M. Belen Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "Efficiency and credit ratings: a permutation-information-theory analysis," Papers 1509.01839, arXiv.org.
    2. Xavier Brouty & Matthieu Garcin, 2023. "Fractal properties, information theory, and market efficiency," Papers 2306.13371, arXiv.org.
    3. Li, Yiying & Ren, Xiaohang & Taghizadeh-Hesary, Farhad, 2023. "Vulnerability of sustainable markets to fossil energy shocks," Resources Policy, Elsevier, vol. 85(PB).
    4. Busu, Cristian & Busu, Mihail, 2019. "Modeling the predictive power of the singular value decomposition-based entropy. Empirical evidence from the Dow Jones Global Titans 50 Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Albarracín E., Eva Susana & Gamboa, Juan C. Rodríguez & Marques, Elaine C.M. & Stosic, Tatijana, 2019. "Complexity analysis of Brazilian agriculture and energy market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 933-941.
    6. Shternshis, Andrey & Mazzarisi, Piero & Marmi, Stefano, 2022. "Measuring market efficiency: The Shannon entropy of high-frequency financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Parnes, Dror, 2024. "Copper-to-gold ratio as a leading indicator for the 10-Year Treasury yield," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    8. Syed Jawad Hussain Shahzad & Jose Arreola‐Hernandez & Md Lutfur Rahman & Gazi Salah Uddin & Muhammad Yahya, 2021. "Asymmetric interdependence between currency markets' volatilities across frequencies and time scales," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2436-2457, April.
    9. Ibarra-Valdez, C. & Alvarez, J. & Alvarez-Ramirez, J., 2016. "Randomness confidence bands of fractal scaling exponents for financial price returns," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 119-124.
    10. Subhamitra Patra & Gourishankar S. Hiremath, 2022. "An Entropy Approach to Measure the Dynamic Stock Market Efficiency," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(2), pages 337-377, June.
    11. Alvarez-Ramirez, Jose & Rodriguez, Eduardo, 2021. "A singular value decomposition entropy approach for testing stock market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    12. Liu, Jian & Jiang, Ting & Ye, Ze, 2021. "Information efficiency research of China's carbon markets," Finance Research Letters, Elsevier, vol. 38(C).
    13. Billio, Monica & Casarin, Roberto & Costola, Michele & Pasqualini, Andrea, 2016. "An entropy-based early warning indicator for systemic risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 45(C), pages 42-59.
    14. Ioan Roxana, 2020. "Capital Market Correlations Structure During The Covid-19 Crisis," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 6, pages 67-79, December.
    15. Alonso-Rivera, Angélica & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2014. "Impact of Monetary Policy on Financial Markets Efficiency and Speculative Bubbles: A Non-linear Entropy-based Approach," MPRA Paper 56127, University Library of Munich, Germany.
    16. Wang, Jingjing & Wang, Xiaoyang, 2021. "COVID-19 and financial market efficiency: Evidence from an entropy-based analysis," Finance Research Letters, Elsevier, vol. 42(C).
    17. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    18. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    19. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    20. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & de Oliveira, Wilson & Stosic, Tatijana, 2016. "Foreign exchange rate entropy evolution during financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 233-239.
    21. Cheng, Zishu & Li, Mingchen & Cui, Ruhong & Wei, Yunjie & Wang, Shouyang & Hong, Yongmiao, 2024. "The impact of COVID-19 on global financial markets: A multiscale volatility spillover analysis," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    22. Kunal Saha & Vinodh Madhavan & G. R. Chandrashekhar, 2022. "Effect of COVID-19 on ETF and index efficiency: evidence from an entropy-based analysis," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(2), pages 347-359, April.
    23. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    24. Hazem Krichene & Mhamed-Ali El-Aroui, 2018. "Artificial stock markets with different maturity levels: simulation of information asymmetry and herd behavior using agent-based and network models," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 511-535, October.
    25. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & Stosic, Tatijana, 2016. "Correlations of multiscale entropy in the FX market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 52-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    2. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Espinosa-Paredes, Gilberto, 2012. "Is the US stock market becoming weakly efficient over time? Evidence from 80-year-long data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5643-5647.
    3. Rodriguez, E. & Aguilar-Cornejo, M. & Femat, R. & Alvarez-Ramirez, J., 2014. "US stock market efficiency over weekly, monthly, quarterly and yearly time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 554-564.
    4. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    5. Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
    6. Argyroudis, George S. & Siokis, Fotios M., 2019. "Spillover effects of Great Recession on Hong-Kong’s Real Estate Market: An analysis based on Causality Plane and Tsallis Curves of Complexity–Entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 576-586.
    7. Siokis, Fotios M., 2018. "Credit market Jitters in the course of the financial crisis: A permutation entropy approach in measuring informational efficiency in financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 266-275.
    8. Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Hanif, Waqas & Kayani, Ghulam Mujtaba, 2018. "Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 433-450.
    9. Kian-Ping Lim & Weiwei Luo & Jae H. Kim, 2013. "Are US stock index returns predictable? Evidence from automatic autocorrelation-based tests," Applied Economics, Taylor & Francis Journals, vol. 45(8), pages 953-962, March.
    10. Subhamitra Patra & Gourishankar S. Hiremath, 2022. "An Entropy Approach to Measure the Dynamic Stock Market Efficiency," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(2), pages 337-377, June.
    11. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    12. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    13. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    14. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & de Oliveira, Wilson & Stosic, Tatijana, 2016. "Foreign exchange rate entropy evolution during financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 233-239.
    15. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    16. Ghazani, Majid Mirzaee & Ebrahimi, Seyed Babak, 2019. "Testing the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the crude oil prices," Finance Research Letters, Elsevier, vol. 30(C), pages 60-68.
    17. Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
    18. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    19. Shternshis, Andrey & Mazzarisi, Piero & Marmi, Stefano, 2022. "Measuring market efficiency: The Shannon entropy of high-frequency financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Maderitsch, R., 2015. "Information transmission between stock markets in Hong Kong, Europe and the US: New evidence on time- and state-dependence," Pacific-Basin Finance Journal, Elsevier, vol. 35(PA), pages 13-36.

    More about this item

    Keywords

    Market efficiency; Entropy; Dow Jones Index; Cycle;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:21:y:2012:i:c:p:64-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.