IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v398y2014icp280-288.html
   My bibliography  Save this article

A permutation entropy based test for causality: The volume–stock price relation

Author

Listed:
  • Matilla-García, Mariano
  • Marín, Manuel Ruiz
  • Dore, Mohammed I.

Abstract

The purpose of this paper is to propose a newly developed non-parametric test for linear and nonlinear causality based on permutation entropy and to show its usefulness in analyzing the potential causal relationship between trading volume and security prices. Most of the empirical applications and tests for causality rely on using Granger causality based test for linear models. Although these tests have high power in uncovering linear causal relations, their power against nonlinear causal relations can be low. Our test is designed to deal with the detection of linear and non-linear causality. We also compare our permutation entropy based test with other Granger causality tests. Monte Carlo simulations show excellent performance (in terms of size and power) of the new test for detecting linear and non-linear causality under different scenarios. Our conclusions point that there is a bidirectional causal relation from volume to price returns not only in the mean but also in the variance.

Suggested Citation

  • Matilla-García, Mariano & Marín, Manuel Ruiz & Dore, Mohammed I., 2014. "A permutation entropy based test for causality: The volume–stock price relation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 280-288.
  • Handle: RePEc:eee:phsmap:v:398:y:2014:i:c:p:280-288
    DOI: 10.1016/j.physa.2013.11.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113010984
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.11.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Ying & Zhuang, Xin-tian & Liu, Zhi-ying, 2012. "Price–volume multifractal analysis and its application in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3484-3495.
    2. M. F. M. Osborne, 1959. "Brownian Motion in the Stock Market," Operations Research, INFORMS, vol. 7(2), pages 145-173, April.
    3. Mariano Matilla‐García & José Miguel Rodríguez & Manuel Ruiz Marín, 2010. "A symbolic test for testing independence between time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 76-85, March.
    4. Diks Cees & Panchenko Valentyn, 2005. "A Note on the Hiemstra-Jones Test for Granger Non-causality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-9, June.
    5. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Short and long run causality measures: Theory and inference," Journal of Econometrics, Elsevier, vol. 154(1), pages 42-58, January.
    6. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    7. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    8. Matilla-García, Mariano & Ruiz Marín, Manuel, 2009. "Detection of non-linear structure in time series," Economics Letters, Elsevier, vol. 105(1), pages 1-6, October.
    9. Barron, Orie E. & Karpoff, Jonathan M., 2004. "Information precision, transaction costs, and trading volume," Journal of Banking & Finance, Elsevier, vol. 28(6), pages 1207-1223, June.
    10. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    11. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    12. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panpan Wang & Tsungwu Ho & Yishi Li, 2020. "The Price-Volume Relationship of the Shanghai Stock Index: Structural Change and the Threshold Effect of Volatility," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    2. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    3. Camacho, Maximo & Romeu, Andres & Ruiz-Marin, Manuel, 2021. "Symbolic transfer entropy test for causality in longitudinal data," Economic Modelling, Elsevier, vol. 94(C), pages 649-661.
    4. Zhang, Yongping & Shang, Pengjian & Xiong, Hui, 2019. "Multivariate generalized information entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1212-1223.
    5. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    6. Weiß, Christian H. & Ruiz Marín, Manuel & Keller, Karsten & Matilla-García, Mariano, 2022. "Non-parametric analysis of serial dependence in time series using ordinal patterns," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    7. Angeliki Papana & Catherine Kyrtsou & Dimitris Kugiumtzis & Cees Diks, 2023. "Identification of causal relationships in non-stationary time series with an information measure: Evidence for simulated and financial data," Empirical Economics, Springer, vol. 64(3), pages 1399-1420, March.
    8. Zhang, Xin & Yang, Liansheng & Zhu, Yingming, 2019. "Analysis of multifractal characterization of Bitcoin market based on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 973-983.
    9. Wang, Qizhen & Zhu, Yingming & Yang, Liansheng & Mul, Remco A.H., 2017. "Coupling detrended fluctuation analysis of Asian stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 337-350.
    10. Niu, Hongli & Wang, Jun & Liu, Cheng, 2018. "Analysis of crude oil markets with improved multiscale weighted permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 389-402.
    11. Sun, Xiaotian & Fang, Wei & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Wu, Tao, 2022. "Complex causalities between the carbon market and the stock markets for energy intensive industries in China," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 404-417.
    12. Wang, Lu & Ruan, Hang & Hong, Yanran & Luo, Keyu, 2023. "Detecting the hidden asymmetric relationship between crude oil and the US dollar: A novel neural Granger causality method," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shyh-Wei Chen, 2008. "Untangling the nexus of stock price and trading volume: evidence from the Chinese stock market," Economics Bulletin, AccessEcon, vol. 7(15), pages 1-16.
    2. repec:ebl:ecbull:v:7:y:2008:i:15:p:1-16 is not listed on IDEAS
    3. Do, Hung Xuan & Brooks, Robert & Treepongkaruna, Sirimon & Wu, Eliza, 2014. "How does trading volume affect financial return distributions?," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 190-206.
    4. Bos, Martijn & Demirer, Riza & Gupta, Rangan & Tiwari, Aviral Kumar, 2018. "Oil returns and volatility: The role of mergers and acquisitions," Energy Economics, Elsevier, vol. 71(C), pages 62-69.
    5. Dergiades, Theologos, 2012. "Do investors’ sentiment dynamics affect stock returns? Evidence from the US economy," Economics Letters, Elsevier, vol. 116(3), pages 404-407.
    6. Gupta, Rangan & Risse, Marian & Volkman, David A. & Wohar, Mark E., 2019. "The role of term spread and pattern changes in predicting stock returns and volatility of the United Kingdom: Evidence from a nonparametric causality-in-quantiles test using over 250 years of data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 391-405.
    7. Francis, Bill B. & Mougoué, Mbodja & Panchenko, Valentyn, 2010. "Is there a symmetric nonlinear causal relationship between large and small firms?," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 23-38, January.
    8. Changtai Li & Weihong Huang & Wei-Siang Wang & Wai-Mun Chia, 2023. "Price Change and Trading Volume: Behavioral Heterogeneity in Stock Market," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 677-713, February.
    9. Bonato, Matteo & Gupta, Rangan & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Moments-based spillovers across gold and oil markets," Energy Economics, Elsevier, vol. 89(C).
    10. Piotr Gurgul & Robert Syrek, 2013. "Testing of Dependencies between Stock Returns and Trading Volume by High Frequency Data," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 11(4 (Winter), pages 353-373.
    11. Henryk Gurgul & Łukasz Lach & Roland Mestel, 2012. "The relationship between budgetary expenditure and economic growth in Poland," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 161-182, March.
    12. Angeliki Papana & Catherine Kyrtsou & Dimitris Kugiumtzis & Cees Diks, 2023. "Identification of causal relationships in non-stationary time series with an information measure: Evidence for simulated and financial data," Empirical Economics, Springer, vol. 64(3), pages 1399-1420, March.
    13. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    14. Gurgul, Henryk & Lach, Łukasz, 2011. "Causality analysis between public expenditure and economic growth of Polish economy in last decade," MPRA Paper 52281, University Library of Munich, Germany.
    15. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian & Yoon, Seong-Min, 2021. "OPEC news and jumps in the oil market," Energy Economics, Elsevier, vol. 96(C).
    16. Pengfei Wang & Wei Zhang & Xiao Li & Dehua Shen, 2019. "Trading volume and return volatility of Bitcoin market: evidence for the sequential information arrival hypothesis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 377-418, June.
    17. Basse, Tobias & Desmyter, Steven & Saft, Danilo & Wegener, Christoph, 2023. "Leading indicators for the US housing market: New empirical evidence and thoughts about implications for risk managers and ESG investors," International Review of Financial Analysis, Elsevier, vol. 89(C).
    18. Demirer, Riza & Gupta, Rangan & Suleman, Tahir & Wohar, Mark E., 2018. "Time-varying rare disaster risks, oil returns and volatility," Energy Economics, Elsevier, vol. 75(C), pages 239-248.
    19. Foued Saâdaoui, 2013. "The Price and Trading Volume Dynamics Relationship in the EEX Power Market: A Wavelet Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 47-69, June.
    20. Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2016. "Can Volume Predict Bitcoin Returns and Volatility? A Nonparametric Causality-in-Quantiles Approach," Working Papers 201662, University of Pretoria, Department of Economics.
    21. Neto, David, 2022. "Examining interconnectedness between media attention and cryptocurrency markets: A transfer entropy story," Economics Letters, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:398:y:2014:i:c:p:280-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.