IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i21p3815-3825.html
   My bibliography  Save this article

A multifractal detrended fluctuation analysis of trading behavior of individual and institutional traders in Tehran stock market

Author

Listed:
  • Bolgorian, Meysam
  • Raei, Reza

Abstract

Employing the multifractal detrended fluctuation analysis (MF-DFA), the multifractal properties of trading behavior of individual and institutional traders in the Tehran Stock Exchange (TSE) are numerically investigated. Using daily trading volume time series of these two categories of traders, the scaling exponents, generalized Hurst exponents, generalized fractal dimensions and singularity spectrum are derived. Furthermore, two main sources of multifractality, i.e. temporal correlations and fat-tailed probability distributions are also examined. We also compare our results with data of S&P 500. Results of this paper suggest that for both classes of investors in TSE, multifractality is mainly due to long-range correlation while for S&P 500, the fat-tailed probability distribution is the main source of multifractality.

Suggested Citation

  • Bolgorian, Meysam & Raei, Reza, 2011. "A multifractal detrended fluctuation analysis of trading behavior of individual and institutional traders in Tehran stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3815-3825.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:21:p:3815-3825
    DOI: 10.1016/j.physa.2011.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711100464X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    3. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    4. Paul De Grauwe & Marianna Grimaldi, 2014. "Heterogeneity of Agents, Transactions Costs and the Exchange Rate," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 2, pages 33-70, World Scientific Publishing Co. Pte. Ltd..
    5. Paul De Grauwe & Marianna Grimaldi, 2014. "Exchange Rate Puzzles: A Tale of Switching Attractors," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 3, pages 71-117, World Scientific Publishing Co. Pte. Ltd..
    6. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    7. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    8. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    9. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    2. Wang, Yanjun & Zhang, Qiqian & Zhu, Chenping & Hu, Minghua & Duong, Vu, 2016. "Human activity under high pressure: A case study on fluctuation scaling of air traffic controller’s communication behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 151-157.
    3. He, Xiaoli & Wang, Hongwu & Du, Ziping, 2014. "The complexity and fractal structures of CSI300 before and after the introduction of CSI300IF," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 76-85.
    4. Hongli Niu & Jun Wang, 2014. "Phase and multifractality analyses of random price time series by finite-range interacting biased voter system," Computational Statistics, Springer, vol. 29(5), pages 1045-1063, October.
    5. Yang, Liansheng & Zhu, Yingming & Wang, Yudong, 2016. "Multifractal characterization of energy stocks in China: A multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 357-365.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolgorian, Meysam & Raei, Reza, 2010. "Convergence of fundamentalists and chartists’ expectations: An alarm for stock market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3822-3827.
    2. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    3. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    4. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    5. Hommes, Cars & Kiseleva, Tatiana & Kuznetsov, Yuri & Verbic, Miroslav, 2012. "Is More Memory In Evolutionary Selection (De)Stabilizing?," Macroeconomic Dynamics, Cambridge University Press, vol. 16(3), pages 335-357, June.
    6. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    7. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    8. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    9. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    10. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    11. F. Cavalli & A. Naimzada & N. Pecora & M. Pireddu, 2021. "Market sentiment and heterogeneous agents in an evolutive financial model," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1189-1219, September.
    12. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.
    13. Tai, Chung-Ching & Chen, Shu-Heng & Yang, Lee-Xieng, 2018. "Cognitive ability and earnings performance: Evidence from double auction market experiments," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 409-440.
    14. Schmitt, Noemi & Westerhoff, Frank, 2021. "Trend followers, contrarians and fundamentalists: Explaining the dynamics of financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 117-136.
    15. Yu, Tongkui & Li, Honggang, 2008. "Dynamic Regimes of a Multi-agent Stock Market Model," MPRA Paper 14339, University Library of Munich, Germany.
    16. Raquel Almeida Ramos & Federico Bassi & Dany Lang, 2020. "Bet against the trend and cash in profits," CEPN Working Papers halshs-02956879, HAL.
    17. Federico Bassi & Raquel Ramos & Dany Lang, 2023. "Bet against the trend and cash in profits: An agent-based model of endogenous fluctuations of exchange rates," Journal of Evolutionary Economics, Springer, vol. 33(2), pages 429-472, April.
    18. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    19. Agliari, Anna & Naimzada, Ahmad & Pecora, Nicolò, 2018. "Boom-bust dynamics in a stock market participation model with heterogeneous traders," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 458-468.
    20. Kaltwasser, Pablo Rovira, 2010. "Uncertainty about fundamentals and herding behavior in the FOREX market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1215-1222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:21:p:3815-3825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.