IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v412y2014icp180-185.html
   My bibliography  Save this article

Occurrence of complementary processes in Parrondo’s paradox

Author

Listed:
  • Soo, Wayne Wah Ming
  • Cheong, Kang Hao

Abstract

Parrondo’s paradox involves two losing processes producing a winning outcome. We analyze the paradox with an original and novel method in which we start with one process and seek to construct a complementary process to achieve the paradox. We then derive a general condition for the classical Parrondo game to have a complementary process. Numerical simulation predicts that approximately two-thirds of such losing games satisfy the required condition. This suggests the common occurrence of the paradox, indicative of many potentially undiscovered applications in real-life scenarios involving stochastic processes.

Suggested Citation

  • Soo, Wayne Wah Ming & Cheong, Kang Hao, 2014. "Occurrence of complementary processes in Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 180-185.
  • Handle: RePEc:eee:phsmap:v:412:y:2014:i:c:p:180-185
    DOI: 10.1016/j.physa.2014.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114004750
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toral, R. & Amengual, Pau & Mangioni, Sergio, 2003. "Parrondo's games as a discrete ratchet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 327(1), pages 105-110.
    2. Flitney, A.P. & Abbott, D., 2003. "Quantum models of Parrondo's games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 152-156.
    3. Soo, Wayne Wah Ming & Cheong, Kang Hao, 2013. "Parrondo’s paradox and complementary Parrondo processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 17-26.
    4. Flitney, A.P. & Ng, J. & Abbott, D., 2002. "Quantum Parrondo's games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 35-42.
    5. Dinís, Luis & Parrondo, Juan M.R., 2004. "Inefficiency of voting in Parrondo games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 701-711.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Shuyi & Lai, Joel Weijia & Koh, Jin Ming & Xie, Neng Gang & Cheong, Kang Hao, 2020. "Parrondo effect: Exploring the nature-inspired framework on periodic functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheong, Kang Hao & Soo, Wayne Wah Ming, 2013. "Construction of novel stochastic matrices for analysis of Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4727-4738.
    2. Soo, Wayne Wah Ming & Cheong, Kang Hao, 2013. "Parrondo’s paradox and complementary Parrondo processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 17-26.
    3. Rubina Zadourian, 2024. "Model-based and empirical analyses of stochastic fluctuations in economy and finance," Papers 2408.16010, arXiv.org.
    4. Ho Fai Ma & Ka Wai Cheung & Ga Ching Lui & Degang Wu & Kwok Yip Szeto, 2019. "Effect of Information Exchange in a Social Network on Investment," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1491-1503, December.
    5. Breuer, Sandro & Mielke, Andreas, 2023. "Multi player Parrondo games with rigid coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    6. Ye, Ye & Hang, Xiao Rong & Koh, Jin Ming & Miszczak, Jarosław Adam & Cheong, Kang Hao & Xie, Neng-gang, 2020. "Passive network evolution promotes group welfare in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Zhu, Yong-fei & Xie, Neng-gang & Ye, Ye & Peng, Fa-rui, 2011. "Quantum game interpretation for a special case of Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 579-586.
    8. Wang, Lu & Xie, Neng-gang & Zhu, Yong-fei & Ye, Ye & Meng, Rui, 2011. "Parity effect of the initial capital based on Parrondo’s games and the quantum interpretation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4535-4542.
    9. Jia, Shuyi & Lai, Joel Weijia & Koh, Jin Ming & Xie, Neng Gang & Cheong, Kang Hao, 2020. "Parrondo effect: Exploring the nature-inspired framework on periodic functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    10. Ejlali, Nasim & Pezeshk, Hamid & Chaubey, Yogendra P. & Sadeghi, Mehdi & Ebrahimi, Ali & Nowzari-Dalini, Abbas, 2020. "Parrondo’s paradox for games with three players and its potential application in combination therapy for type II diabetes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    11. Fotoohinasab, Atiyeh & Fatemizadeh, Emad & Pezeshk, Hamid & Sadeghi, Mehdi, 2018. "Denoising of genetic switches based on Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 410-420.
    12. Amengual, P. & Meurs, P. & Cleuren, B. & Toral, R., 2006. "Reversals of chance in paradoxical games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 641-648.
    13. Yongfei Li & Jiangtao Wang & Bin Wang & Clark Luo, 2024. "A Study of Quantum Game for Low-Carbon Transportation with Government Subsidies and Penalties," Sustainability, MDPI, vol. 16(7), pages 1-23, April.
    14. Edward W. Piotrowski & Jan Sladkowski, "undated". "The Next Stage: Quantum Game Theory," Departmental Working Papers 18, University of Bialtystok, Department of Theoretical Physics.
    15. Piotrowski, Edward W. & Sładkowski, Jan, 2008. "Quantum auctions: Facts and myths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3949-3953.
    16. Ye, Ye & Zhang, Xin-shi & Liu, Lin & Xie, Neng-Gang, 2021. "Effects of group interactions on the network Parrondo’s games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    17. Edward W. Piotrowski & Jan Sladkowski, "undated". "Quantum Games and Programmable Quantum Systems," Departmental Working Papers 22, University of Bialtystok, Department of Theoretical Physics.
    18. Edward W. Piotrowski & Jan Sladkowski, "undated". "An Invitation to Quantum Game Theory," Departmental Working Papers 15, University of Bialtystok, Department of Theoretical Physics.
    19. Song, Mi Jung & Lee, Jiyeon, 2021. "An approximation by Parrondo games of the Brownian ratchet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    20. Xie, Neng-gang & Guo, Jia-yi & Ye, Ye & Wang, Chao & Wang, Lu, 2012. "The paradox of group behaviors based on Parrondo’s games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6146-6155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:412:y:2014:i:c:p:180-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.