IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v583y2021ics0378437121005446.html
   My bibliography  Save this article

Effects of group interactions on the network Parrondo’s games

Author

Listed:
  • Ye, Ye
  • Zhang, Xin-shi
  • Liu, Lin
  • Xie, Neng-Gang

Abstract

A minimalistic multi-agent Parrondo’s game structure with network evolution (Game A) and branching dependent on the number of wins and losses of neighbors (Game B) was previously introduced, indicating that Parrondo’s paradox occurs, in which a losing strategy and a neutral strategy combine to yield a winning one. Using a similar Game B’s structure and introducing a new Game A’s structure with competition and cooperation behaviors, we further analyze the influences of network evolution, cooperation and competition behaviors as different group interactions on the network Parrondo’s games. Based on the multi-agent Parrondo’s game, the discrete Markov chain method is used. Theoretical analysis reveals that losing configurations of Game B, when stochastically mixed with neutral Game A with competition and cooperation behaviors, can result in paradoxical winning scenarios like network evolution and can even produce larger parameter space. Simulation results indicate that under different network topology structures stochastically mixing Game A with different group interactions and Game B can produce different enhanced winning outcomes, despite Game B being individually losing. The underlying paradoxical mechanisms where the ratcheting mechanism of Game B and the agitating mechanism of Game A with different group interactions are analyzed. It is also elucidated that agitation from Game A with different group interactions improves the capital exchange between individuals.

Suggested Citation

  • Ye, Ye & Zhang, Xin-shi & Liu, Lin & Xie, Neng-Gang, 2021. "Effects of group interactions on the network Parrondo’s games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
  • Handle: RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121005446
    DOI: 10.1016/j.physa.2021.126271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121005446
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Ye & Xie, Neng-gang & Wang, Lu & Cen, Yu-wan, 2013. "The multi-agent Parrondo’s model based on the network evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5414-5421.
    2. Gregory P. Harmer & Derek Abbott, 1999. "Losing strategies can win by Parrondo's paradox," Nature, Nature, vol. 402(6764), pages 864-864, December.
    3. Ejlali, Nasim & Pezeshk, Hamid & Chaubey, Yogendra P. & Sadeghi, Mehdi & Ebrahimi, Ali & Nowzari-Dalini, Abbas, 2020. "Parrondo’s paradox for games with three players and its potential application in combination therapy for type II diabetes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    4. Fotoohinasab, Atiyeh & Fatemizadeh, Emad & Pezeshk, Hamid & Sadeghi, Mehdi, 2018. "Denoising of genetic switches based on Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 410-420.
    5. Flitney, A.P. & Abbott, D., 2003. "Quantum models of Parrondo's games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 152-156.
    6. Ye, Ye & Hang, Xiao Rong & Koh, Jin Ming & Miszczak, Jarosław Adam & Cheong, Kang Hao & Xie, Neng-gang, 2020. "Passive network evolution promotes group welfare in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Mihailović, Zoran & Rajković, Milan, 2006. "Cooperative Parrondo's games on a two-dimensional lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(1), pages 244-251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miszczak, Jarosław Adam, 2022. "Constructing games on networks for controlling the inequalities in the capital distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ejlali, Nasim & Pezeshk, Hamid & Chaubey, Yogendra P. & Sadeghi, Mehdi & Ebrahimi, Ali & Nowzari-Dalini, Abbas, 2020. "Parrondo’s paradox for games with three players and its potential application in combination therapy for type II diabetes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    2. Fotoohinasab, Atiyeh & Fatemizadeh, Emad & Pezeshk, Hamid & Sadeghi, Mehdi, 2018. "Denoising of genetic switches based on Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 410-420.
    3. Rosas, Alexandre, 2021. "Synchronization induced by alternation of dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    4. Lai, Joel Weijia & Cheong, Kang Hao, 2022. "Risk-taking in social Parrondo’s games can lead to Simpson’s paradox," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Ye, Ye & Hang, Xiao Rong & Koh, Jin Ming & Miszczak, Jarosław Adam & Cheong, Kang Hao & Xie, Neng-gang, 2020. "Passive network evolution promotes group welfare in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    6. Jia, Shuyi & Lai, Joel Weijia & Koh, Jin Ming & Xie, Neng Gang & Cheong, Kang Hao, 2020. "Parrondo effect: Exploring the nature-inspired framework on periodic functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    7. Panda, Dinesh Kumar & Govind, B. Varun & Benjamin, Colin, 2022. "Generating highly entangled states via discrete-time quantum walks with Parrondo sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    8. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    9. Mishra, Ankit & Wen, Tao & Cheong, Kang Hao, 2024. "Efficient traffic management in networks with limited resources: The switching routing strategy," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    10. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    11. Chen, Zongjie & Zhang, Yigang & Kong, Qingkai & Fang, Ting & Wang, Jing, 2022. "Observer-based H∞ control for persistent dwell-time switched networked nonlinear systems under packet dropout," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    12. Lai, Joel Weijia & Cheong, Kang Hao, 2024. "A Parrondo paradoxical interplay of reciprocity and reputation in social dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    13. Miszczak, Jarosław Adam, 2022. "Constructing games on networks for controlling the inequalities in the capital distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    14. Cheong, Kang Hao & Soo, Wayne Wah Ming, 2013. "Construction of novel stochastic matrices for analysis of Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4727-4738.
    15. Soo, Wayne Wah Ming & Cheong, Kang Hao, 2013. "Parrondo’s paradox and complementary Parrondo processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 17-26.
    16. Edward W. Piotrowski & Jan Sladkowski, "undated". "The Next Stage: Quantum Game Theory," Departmental Working Papers 18, University of Bialtystok, Department of Theoretical Physics.
    17. Gupta, Divya & Chandramouli, V.V.M.S., 2022. "Dynamics of deformed Hénon-like map," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    18. Piotrowski, Edward W. & Sładkowski, Jan, 2008. "Quantum auctions: Facts and myths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3949-3953.
    19. Xie, Neng-gang & Chen, Yun & Ye, Ye & Xu, Gang & Wang, Lin-gang & Wang, Chao, 2011. "Theoretical analysis and numerical simulation of Parrondo’s paradox game in space," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 401-414.
    20. Rubina Zadourian, 2024. "Model-based and empirical analyses of stochastic fluctuations in economy and finance," Papers 2408.16010, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121005446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.