IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i23p6146-6155.html
   My bibliography  Save this article

The paradox of group behaviors based on Parrondo’s games

Author

Listed:
  • Xie, Neng-gang
  • Guo, Jia-yi
  • Ye, Ye
  • Wang, Chao
  • Wang, Lu

Abstract

We assume a multi-agent model based on Parrondo’s games. The model consists of game A between individuals and game B. In game A, two behavioral patterns are defined: competition and inaction. A controlled alternation strategy of behavioral pattern that gives a single player the highest return is proposed when game A+B is played randomly. Interesting phenomena can be found in collective games where a large number of individuals choose the behavioral pattern by voting. When game B is the capital-dependent version, the outcome can be better for the players to vote randomly than to vote according to their own capital. An explanation of such counter-intuitive phenomena is given by noting that selfish voting prevents the competition behavior of game A that is essential for the total capital to grow. However, if game B is the history-dependent version, this counter-intuitive phenomenon will not happen. The reason is selfish voting results in the competition behavior of game A, and finally it produces the winning results.

Suggested Citation

  • Xie, Neng-gang & Guo, Jia-yi & Ye, Ye & Wang, Chao & Wang, Lu, 2012. "The paradox of group behaviors based on Parrondo’s games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6146-6155.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:6146-6155
    DOI: 10.1016/j.physa.2012.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112006899
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dinís, Luis & Parrondo, Juan M.R., 2004. "Inefficiency of voting in Parrondo games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 701-711.
    2. Mihailović, Zoran & Rajković, Milan, 2006. "Cooperative Parrondo's games on a two-dimensional lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(1), pages 244-251.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ejlali, Nasim & Pezeshk, Hamid & Chaubey, Yogendra P. & Sadeghi, Mehdi & Ebrahimi, Ali & Nowzari-Dalini, Abbas, 2020. "Parrondo’s paradox for games with three players and its potential application in combination therapy for type II diabetes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    2. Fotoohinasab, Atiyeh & Fatemizadeh, Emad & Pezeshk, Hamid & Sadeghi, Mehdi, 2018. "Denoising of genetic switches based on Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 410-420.
    3. Xie, Neng-gang & Chen, Yun & Ye, Ye & Xu, Gang & Wang, Lin-gang & Wang, Chao, 2011. "Theoretical analysis and numerical simulation of Parrondo’s paradox game in space," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 401-414.
    4. Soo, Wayne Wah Ming & Cheong, Kang Hao, 2014. "Occurrence of complementary processes in Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 180-185.
    5. Ye, Ye & Xie, Neng-gang & Wang, Lu & Cen, Yu-wan, 2013. "The multi-agent Parrondo’s model based on the network evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5414-5421.
    6. Ye, Ye & Zhang, Xin-shi & Liu, Lin & Xie, Neng-Gang, 2021. "Effects of group interactions on the network Parrondo’s games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    7. Li, Yin-feng & Ye, Shun-qiang & Zheng, Kai-xuan & Xie, Neng-gang & Ye, Ye & Wang, Lu, 2014. "A new theoretical analysis approach for a multi-agent spatial Parrondo’s game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 369-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:6146-6155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.