IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p3051-d1370935.html
   My bibliography  Save this article

A Study of Quantum Game for Low-Carbon Transportation with Government Subsidies and Penalties

Author

Listed:
  • Yongfei Li

    (School of Modern Post, Xi’an University of Posts and Telecommunications, Xi’an 710061, China)

  • Jiangtao Wang

    (School of Modern Post, Xi’an University of Posts and Telecommunications, Xi’an 710061, China)

  • Bin Wang

    (College of Business and Public Management, Kean University-Wenzhou Campus, Wenzhou 325060, China)

  • Clark Luo

    (Waikato Institute of Technology, Hamilton 3204, New Zealand)

Abstract

Traditional classical game theory struggles to effectively address the inefficiencies in subsidizing and penalizing the R&D and production of low-carbon transportation vehicles. To avoid the shortcomings of classic game theory, this research integrates quantum game theory with Nash games to explore the characteristics of automakers’ behavior for low-carbon transportation with government subsidies and penalties. We first constructed a low-carbon transportation game model between the government and automakers. Then, the optimal profit strategies for both parties in a quantum entangled state were analyzed. Finally, the impact of quantum superposition states and the initial entangled state on the profit strategies of both parties was simulated and analyzed using Monte Carlo simulations. We find that under the joint effects of government subsidies and penalties, quantum game states and the initial quantum entangled state have a crucial influence on the game’s outcomes. They can encourage the realization of Nash equilibrium and perfect coordination in the quantum game, significantly increasing the profits for both parties. This in turn effectively stimulates automakers to research and produce low-carbon transportation solutions, promoting the rapid development of low-carbon transportation technology. In theory, this research can enrich the Quantum game for improvements in the Nash equilibrium solution for the government to subsidize and penalize the low-carbon transportation problem. Meanwhile, in practice, it can provide guidance and reference in optimal strategy selection conditions for government policymakers and automakers for low-carbon transportation.

Suggested Citation

  • Yongfei Li & Jiangtao Wang & Bin Wang & Clark Luo, 2024. "A Study of Quantum Game for Low-Carbon Transportation with Government Subsidies and Penalties," Sustainability, MDPI, vol. 16(7), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3051-:d:1370935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/3051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/3051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Flitney, A.P. & Ng, J. & Abbott, D., 2002. "Quantum Parrondo's games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 35-42.
    2. Schneckenberg, Dirk & Roth, Steffen & Velamuri, Vivek K., 2023. "Deparadoxification and value focus in sharing ventures: Concealing paradoxes in strategic decision-making," Journal of Business Research, Elsevier, vol. 162(C).
    3. Fritz, Markus & Plötz, Patrick & Funke, Simon A., 2019. "The impact of ambitious fuel economy standards on the market uptake of electric vehicles and specific CO2 emissions," Energy Policy, Elsevier, vol. 135(C).
    4. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Environmental Sustainability within Attaining Sustainable Development Goals: The Role of Digitalization and the Transport Sector," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    5. Dirk Schneckenberg & Steffen Roth & Vivek Velamuri, 2023. "Deparadoxification and value focus in sharing ventures: Concealing paradoxes in strategic decision-making," Post-Print hal-04056130, HAL.
    6. Ji, Shou-feng & Zhao, Dan & Luo, Rong-juan, 2019. "Evolutionary game analysis on local governments and manufacturers' behavioral strategies: Impact of phasing out subsidies for new energy vehicles," Energy, Elsevier, vol. 189(C).
    7. Shi, Lian & Xu, Feng & Chen, Yongtai, 2021. "Quantum Cournot duopoly game with isoelastic demand function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Junqiang & Ren, Hao & Wang, Mingyue, 2021. "How to escape the dilemma of charging infrastructure construction? A multi-sectorial stochastic evolutionary game model," Energy, Elsevier, vol. 231(C).
    2. Meng Ding & Hui Zeng, 2022. "Multi-Agent Evolutionary Game in the Recycling Utilization of Sulfate-Rich Wastewater," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
    3. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    4. Liu, Changyu & Song, Yadong & Wang, Wei & Shi, Xunpeng, 2023. "The governance of manufacturers’ greenwashing behaviors: A tripartite evolutionary game analysis of electric vehicles," Applied Energy, Elsevier, vol. 333(C).
    5. Ejlali, Nasim & Pezeshk, Hamid & Chaubey, Yogendra P. & Sadeghi, Mehdi & Ebrahimi, Ali & Nowzari-Dalini, Abbas, 2020. "Parrondo’s paradox for games with three players and its potential application in combination therapy for type II diabetes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    6. Di Wang & Yuman Li, 2022. "Measuring the Policy Effectiveness of China’s New-Energy Vehicle Industry and Its Differential Impact on Supply and Demand Markets," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    7. Wenhui Zhao & Yimeng Liu & Jiansheng Hou & Lifang Liu, 2023. "Impact of Carbon Trading Mechanism Considering Blockchain Technology on the Evolution of New Energy Vehicle Industry in the Post-Subsidy Era," Sustainability, MDPI, vol. 15(17), pages 1-18, September.
    8. Yan Chen & Menglin Zhan & Yue Liu, 2023. "Promoting the Development of China’s New-Energy Vehicle Industry in the Post-Subsidy Era: A Study Based on the Evolutionary Game Theory Method," Energies, MDPI, vol. 16(15), pages 1-15, August.
    9. Qingbo Tan & Zhuning Wang & Wei Fan & Xudong Li & Xiangguang Li & Fanqi Li & Zihao Zhao, 2022. "Development Path and Model Design of a New Energy Vehicle in China," Energies, MDPI, vol. 16(1), pages 1-15, December.
    10. Shuang Zhang & Yueping Du & Linxue Wang, 2024. "Using Consumer Loss Aversion to Investigate the Effect of Stackelberg Pricing for New-Energy Vehicles," Energies, MDPI, vol. 17(17), pages 1-22, September.
    11. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko & Denys Pudryk, 2024. "Global Image of Countries and Immigration Flows," Central European Business Review, Prague University of Economics and Business, vol. 2024(4), pages 83-101.
    12. Qingyou Yan & Meijuan Zhang & Wei Li & Guangyu Qin, 2020. "Risk Assessment of New Energy Vehicle Supply Chain Based on Variable Weight Theory and Cloud Model: A Case Study in China," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    13. Henryk Dzwigol & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2024. "Digitalization and Energy in Attaining Sustainable Development: Impact on Energy Consumption, Energy Structure, and Energy Intensity," Energies, MDPI, vol. 17(5), pages 1-17, March.
    14. Zhang, Mingye & Yang, Min & Gao, Yangfan, 2024. "Tripartite evolutionary game and simulation analysis of electric bus charging facility sharing under the governmental reward and punishment mechanism," Energy, Elsevier, vol. 307(C).
    15. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    16. Dongpu Fu & Jiarui Sun & Cuiyou Yao & Fulei Shi, 2024. "The influence of policy incentives on the diffusion of battery-swapping taxis and stations: a coupled evolutionary game model in complex networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26945-26969, October.
    17. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    18. Ye Gao & Renfu Jia & Yi Yao & Jiahui Xu, 2022. "Evolutionary Game Theory and the Simulation of Green Building Development Based on Dynamic Government Subsidies," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    19. Liao, Dongsheng & Tan, Binbin, 2023. "An evolutionary game analysis of new energy vehicles promotion considering carbon tax in post-subsidy era," Energy, Elsevier, vol. 264(C).
    20. Wei Bai & Xuguang Wen & Jiayan Zhang & Linheng Li, 2024. "Cooperative Vehicle Infrastructure System or Autonomous Driving System? From the Perspective of Evolutionary Game Theory," Mathematics, MDPI, vol. 12(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3051-:d:1370935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.