IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v314y2002i1p35-42.html
   My bibliography  Save this article

Quantum Parrondo's games

Author

Listed:
  • Flitney, A.P.
  • Ng, J.
  • Abbott, D.

Abstract

Parrondo's paradox arises when two losing games are combined to produce a winning one. A history-dependent quantum Parrondo game is studied where the rotation operators that represent the toss of a classical biased coin are replaced by general SU(2) operators to transform the game into the quantum domain. In the initial state, a superposition of qubits can be used to couple the games and produce interference leading to quite different payoffs to those in the classical case.

Suggested Citation

  • Flitney, A.P. & Ng, J. & Abbott, D., 2002. "Quantum Parrondo's games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 35-42.
  • Handle: RePEc:eee:phsmap:v:314:y:2002:i:1:p:35-42
    DOI: 10.1016/S0378-4371(02)01084-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102010841
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01084-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho Fai Ma & Ka Wai Cheung & Ga Ching Lui & Degang Wu & Kwok Yip Szeto, 2019. "Effect of Information Exchange in a Social Network on Investment," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1491-1503, December.
    2. Edward W. Piotrowski & Jan Sladkowski, "undated". "An Invitation to Quantum Game Theory," Departmental Working Papers 15, University of Bialtystok, Department of Theoretical Physics.
    3. Breuer, Sandro & Mielke, Andreas, 2023. "Multi player Parrondo games with rigid coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    4. Cheong, Kang Hao & Soo, Wayne Wah Ming, 2013. "Construction of novel stochastic matrices for analysis of Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4727-4738.
    5. Yongfei Li & Jiangtao Wang & Bin Wang & Clark Luo, 2024. "A Study of Quantum Game for Low-Carbon Transportation with Government Subsidies and Penalties," Sustainability, MDPI, vol. 16(7), pages 1-23, April.
    6. Soo, Wayne Wah Ming & Cheong, Kang Hao, 2013. "Parrondo’s paradox and complementary Parrondo processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 17-26.
    7. Ye, Ye & Hang, Xiao Rong & Koh, Jin Ming & Miszczak, Jarosław Adam & Cheong, Kang Hao & Xie, Neng-gang, 2020. "Passive network evolution promotes group welfare in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Zhu, Yong-fei & Xie, Neng-gang & Ye, Ye & Peng, Fa-rui, 2011. "Quantum game interpretation for a special case of Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 579-586.
    9. Ejlali, Nasim & Pezeshk, Hamid & Chaubey, Yogendra P. & Sadeghi, Mehdi & Ebrahimi, Ali & Nowzari-Dalini, Abbas, 2020. "Parrondo’s paradox for games with three players and its potential application in combination therapy for type II diabetes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    10. Rubina Zadourian, 2024. "Model-based and empirical analyses of stochastic fluctuations in economy and finance," Papers 2408.16010, arXiv.org.
    11. Wang, Lu & Xie, Neng-gang & Zhu, Yong-fei & Ye, Ye & Meng, Rui, 2011. "Parity effect of the initial capital based on Parrondo’s games and the quantum interpretation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4535-4542.
    12. Soo, Wayne Wah Ming & Cheong, Kang Hao, 2014. "Occurrence of complementary processes in Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 180-185.

    More about this item

    Keywords

    Quantum games; Parrondo's paradox;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:314:y:2002:i:1:p:35-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.