IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v563y2021ics0378437120307718.html
   My bibliography  Save this article

An approximation by Parrondo games of the Brownian ratchet

Author

Listed:
  • Song, Mi Jung
  • Lee, Jiyeon

Abstract

The Brownian ratchet is a diffusion process that represents the dynamics of a Brownian particle moving toward a minimum of an asymmetric sawtooth potential. It motivated Parrondo’s paradox, in which two losing games can be combined in a certain manner to achieve a winning outcome. Recently it has been found that the Brownian ratchet can be approximated by discrete-time random walks with state-dependent transition probabilities derived from corresponding Parrondo games. We study the discretized Fokker–Planck equation of the Brownian ratchet so that we can determine whether the approximating Parrondo game is fair through tilting of the potential function. A fair Parrondo game corresponds to a periodic untilted potential function whereas a winning or losing Parrondo game induces a tilted potential function. As a result, we provide transition probabilities of a random walk that can be used to approximate a diffusion process with a periodic piecewise constant drift coefficient.

Suggested Citation

  • Song, Mi Jung & Lee, Jiyeon, 2021. "An approximation by Parrondo games of the Brownian ratchet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
  • Handle: RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307718
    DOI: 10.1016/j.physa.2020.125454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120307718
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toral, R. & Amengual, Pau & Mangioni, Sergio, 2003. "Parrondo's games as a discrete ratchet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 327(1), pages 105-110.
    2. Wang, Lu & Xie, Neng-gang & Zhu, Yong-fei & Ye, Ye & Meng, Rui, 2011. "Parity effect of the initial capital based on Parrondo’s games and the quantum interpretation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4535-4542.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amengual, P. & Meurs, P. & Cleuren, B. & Toral, R., 2006. "Reversals of chance in paradoxical games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 641-648.
    2. Soo, Wayne Wah Ming & Cheong, Kang Hao, 2014. "Occurrence of complementary processes in Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 180-185.
    3. Wang, Lu & Zhu, Yong-fei & Ye, Ye & Meng, Rui & Xie, Neng-gang, 2012. "The coupling effect of the process sequence and the parity of the initial capital on Parrondo’s games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5197-5207.
    4. Breuer, Sandro & Mielke, Andreas, 2023. "Multi player Parrondo games with rigid coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.