IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v622y2023ics0378437123004454.html
   My bibliography  Save this article

Multi player Parrondo games with rigid coupling

Author

Listed:
  • Breuer, Sandro
  • Mielke, Andreas

Abstract

In the original Parrondo game, a single player combines two losing strategies to a winning strategy. In this paper we investigate the question what happens, if two or more players play Parrondo games in a coordinated way. We introduce a strong coupling between the players such that the gain or loss of all players in one round is the same. We investigate two possible realizations of such a coupling. For both we show that the coupling increases the gain per player. The dependency of the gain on the various parameters of the games is determined. The coupling can not only lead to a larger gain, but it can also dominate the driving mechanism of the uncoupled games. Which driving mechanism dominates, depends on the type of coupling. Both couplings are set side by side and the main similarities and differences are emphasized.

Suggested Citation

  • Breuer, Sandro & Mielke, Andreas, 2023. "Multi player Parrondo games with rigid coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
  • Handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123004454
    DOI: 10.1016/j.physa.2023.128890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123004454
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory P. Harmer & Derek Abbott, 1999. "Losing strategies can win by Parrondo's paradox," Nature, Nature, vol. 402(6764), pages 864-864, December.
    2. Flitney, A.P. & Ng, J. & Abbott, D., 2002. "Quantum Parrondo's games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 35-42.
    3. Toral, R. & Amengual, Pau & Mangioni, Sergio, 2003. "Parrondo's games as a discrete ratchet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 327(1), pages 105-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubina Zadourian, 2024. "Model-based and empirical analyses of stochastic fluctuations in economy and finance," Papers 2408.16010, arXiv.org.
    2. Soo, Wayne Wah Ming & Cheong, Kang Hao, 2014. "Occurrence of complementary processes in Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 180-185.
    3. Ejlali, Nasim & Pezeshk, Hamid & Chaubey, Yogendra P. & Sadeghi, Mehdi & Ebrahimi, Ali & Nowzari-Dalini, Abbas, 2020. "Parrondo’s paradox for games with three players and its potential application in combination therapy for type II diabetes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    4. Amengual, P. & Meurs, P. & Cleuren, B. & Toral, R., 2006. "Reversals of chance in paradoxical games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 641-648.
    5. Soo, Wayne Wah Ming & Cheong, Kang Hao, 2013. "Parrondo’s paradox and complementary Parrondo processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 17-26.
    6. Edward W. Piotrowski & Jan Sladkowski, "undated". "An Invitation to Quantum Game Theory," Departmental Working Papers 15, University of Bialtystok, Department of Theoretical Physics.
    7. Ho Fai Ma & Ka Wai Cheung & Ga Ching Lui & Degang Wu & Kwok Yip Szeto, 2019. "Effect of Information Exchange in a Social Network on Investment," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1491-1503, December.
    8. Ye, Ye & Hang, Xiao Rong & Koh, Jin Ming & Miszczak, Jarosław Adam & Cheong, Kang Hao & Xie, Neng-gang, 2020. "Passive network evolution promotes group welfare in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    9. Zhu, Yong-fei & Xie, Neng-gang & Ye, Ye & Peng, Fa-rui, 2011. "Quantum game interpretation for a special case of Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 579-586.
    10. Song, Mi Jung & Lee, Jiyeon, 2021. "An approximation by Parrondo games of the Brownian ratchet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    11. Lai, Joel Weijia & Cheong, Kang Hao, 2023. "Boosting Brownian-inspired games with network synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Zhang, M. & Wang, Si-Yi & Hu, Xin-Tao & Alfaro-Bittner, K., 2021. "Local and global information affect cooperation in networked Prisoner’s dilemma games," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    13. Panda, Dinesh Kumar & Govind, B. Varun & Benjamin, Colin, 2022. "Generating highly entangled states via discrete-time quantum walks with Parrondo sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    14. Rosas, Alexandre, 2021. "Synchronization induced by alternation of dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    15. Yongfei Li & Jiangtao Wang & Bin Wang & Clark Luo, 2024. "A Study of Quantum Game for Low-Carbon Transportation with Government Subsidies and Penalties," Sustainability, MDPI, vol. 16(7), pages 1-23, April.
    16. Lai, Joel Weijia & Cheong, Kang Hao, 2024. "A Parrondo paradoxical interplay of reciprocity and reputation in social dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    17. Miszczak, Jarosław Adam, 2022. "Constructing games on networks for controlling the inequalities in the capital distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    18. Cheong, Kang Hao & Soo, Wayne Wah Ming, 2013. "Construction of novel stochastic matrices for analysis of Parrondo’s paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4727-4738.
    19. Gupta, Divya & Chandramouli, V.V.M.S., 2022. "Dynamics of deformed Hénon-like map," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. Lai, Joel Weijia & Cheong, Kang Hao, 2022. "Risk-taking in social Parrondo’s games can lead to Simpson’s paradox," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123004454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.