IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v420y2022ics0096300321009978.html
   My bibliography  Save this article

A new method based on the Laplace transform and Fourier series for solving linear neutral delay differential equations

Author

Listed:
  • Kerr, Gilbert
  • González-Parra, Gilberto
  • Sherman, Michele

Abstract

In this paper, we present a new method for solving linear neutral delay differential equations. We derive and illustrate the main features of this novel approach, that combines the Laplace transform method with (harmonic) Fourier series theory. Linear neutral delay differential equations are generally more difficult to solve because the time delay appears in the derivative of the state variable. We rely on computer algebra and numerical methods to implement the method. In addition, we derive an approximate formula for the location of the complex poles, which are required for computing the inverse Laplace transform. The form of the resulting solution, when only the Laplace method is used is a non-harmonic Fourier series. The accuracy of this solution can be improved by including more terms in the associated truncated series, but the convergence to the correct solution is slow. The main goal of this paper is to present a modified method which enables us to account for the terms which are excluded from these truncated Laplace series. That is, the terms in the tail of the infinite series. We include several examples where we compare the solutions generated by the standard Laplace method and the proposed Laplace-Fourier approach. Both solutions require using Cauchy’s residue theorem and finding the real and complex poles. It is shown that the Laplace-Fourier solution provides more accurate solutions than the conventional Laplace transform solution. Finally, since the Laplace-Fourier method generates a solution which is valid for all times, it allows us to accurately approximate the solution at any point with a single calculation.

Suggested Citation

  • Kerr, Gilbert & González-Parra, Gilberto & Sherman, Michele, 2022. "A new method based on the Laplace transform and Fourier series for solving linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 420(C).
  • Handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321009978
    DOI: 10.1016/j.amc.2021.126914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321009978
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Hongyu & Zhang, Qifeng & Wan, Shaohua, 2019. "The continuous Galerkin finite element methods for linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 76-85.
    2. Faheem, Mo & Raza, Akmal & Khan, Arshad, 2021. "Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 72-92.
    3. Li, Jing & Sun, Gui-Quan & Jin, Zhen, 2014. "Pattern formation of an epidemic model with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 100-109.
    4. Xu, Rui, 2012. "Global dynamics of an SEIS epidemiological model with time delay describing a latent period," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 85(C), pages 90-102.
    5. Juan Carlos Cortés & Marc Jornet, 2020. "L p -Solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term," Mathematics, MDPI, vol. 8(6), pages 1-16, June.
    6. Fabiano, R.H. & Payne, Catherine, 2018. "Spline approximation for systems of linear neutral delay-differential equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 789-808.
    7. Jamilla, Cristeta & Mendoza, Renier & Mező, István, 2020. "Solutions of neutral delay differential equations using a generalized Lambert W function," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    8. María Ángeles Castro & Miguel Antonio García & José Antonio Martín & Francisco Rodríguez, 2019. "Exact and Nonstandard Finite Difference Schemes for Coupled Linear Delay Differential Systems," Mathematics, MDPI, vol. 7(11), pages 1-14, November.
    9. García, M.A. & Castro, M.A. & Martín, J.A. & Rodríguez, F., 2018. "Exact and nonstandard numerical schemes for linear delay differential models," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 337-345.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerr, Gilbert & González-Parra, Gilberto, 2022. "Accuracy of the Laplace transform method for linear neutral delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 308-326.
    2. Abraham J. Arenas & Gilberto González-Parra & Jhon J. Naranjo & Myladis Cogollo & Nicolás De La Espriella, 2021. "Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay," Mathematics, MDPI, vol. 9(3), pages 1-21, January.
    3. Sharmin Sultana & Gilberto González-Parra & Abraham J. Arenas, 2023. "Mathematical Modeling of Toxoplasmosis in Cats with Two Time Delays under Environmental Effects," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    4. Carlos Julio Mayorga & María Ángeles Castro & Antonio Sirvent & Francisco Rodríguez, 2023. "On the Construction of Exact Numerical Schemes for Linear Delay Models," Mathematics, MDPI, vol. 11(8), pages 1-9, April.
    5. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    6. Wang, Xiuping & Gao, Fuzheng & Liu, Yang & Sun, Zhengjia, 2020. "A Weak Galerkin Finite Element Method for High Dimensional Time-fractional Diffusion Equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    7. Jornet, Marc, 2021. "Exact solution to a multidimensional wave equation with delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    8. Tipsri, S. & Chinviriyasit, W., 2015. "The effect of time delay on the dynamics of an SEIR model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 153-172.
    9. Nian, Fuzhong & Hu, Chasheng & Yao, Shuanglong & Wang, Longjing & Wang, Xingyuan, 2018. "An immunization based on node activity," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 228-233.
    10. Shahni, Julee & Singh, Randhir, 2022. "Numerical simulation of Emden–Fowler integral equation with Green’s function type kernel by Gegenbauer-wavelet, Taylor-wavelet and Laguerre-wavelet collocation methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 430-444.
    11. Julia Calatayud & Juan Carlos Cortés & Marc Jornet & Francisco Rodríguez, 2020. "Mean Square Convergent Non-Standard Numerical Schemes for Linear Random Differential Equations with Delay," Mathematics, MDPI, vol. 8(9), pages 1-17, August.
    12. Wang, Yi & Cao, Jinde & Sun, Gui-Quan & Li, Jing, 2014. "Effect of time delay on pattern dynamics in a spatial epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 137-148.
    13. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    14. Theodosiou, T.C., 2021. "Derivative-orthogonal non-uniform B-Spline wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 368-388.
    15. Vsevolod G. Sorokin & Andrei V. Vyazmin, 2022. "Nonlinear Reaction–Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration," Mathematics, MDPI, vol. 10(11), pages 1-39, May.
    16. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Exact Solutions of Reaction–Diffusion PDEs with Anisotropic Time Delay," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    17. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    18. Vasily E. Tarasov, 2024. "Exact Finite-Difference Calculus: Beyond Set of Entire Functions," Mathematics, MDPI, vol. 12(7), pages 1-37, March.
    19. María Ángeles Castro & Miguel Antonio García & José Antonio Martín & Francisco Rodríguez, 2019. "Exact and Nonstandard Finite Difference Schemes for Coupled Linear Delay Differential Systems," Mathematics, MDPI, vol. 7(11), pages 1-14, November.
    20. Sabermahani, Sedigheh & Ordokhani, Yadollah, 2021. "General Lagrange-hybrid functions and numerical solution of differential equations containing piecewise constant delays with bibliometric analysis," Applied Mathematics and Computation, Elsevier, vol. 395(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321009978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.