IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v586y2022ics0378437121007779.html
   My bibliography  Save this article

A complex network analysis approach for estimation and detection of traffic incidents based on independent component analysis

Author

Listed:
  • Sheikh, Muhammad Sameer
  • Regan, Amelia

Abstract

Traffic incidents due to non-recurring congestion frequently occur in urban environments. In this study, we propose the estimation and detection of traffic incidents based on independent component analysis (ICA) and hybrid observer (HO)-generalized likelihood ratio (GLR) techniques. First, we develop the traffic time series to obtain insight into the traffic flow and to detect traffic incidents. Then, we use time series analysis to construct complex networks. Next, we propose the ICA technique to monitor traffic flow. Then, we introduce a piecewise switched linear model based observer to estimate the possible occurrence of traffic incidents. Finally, we propose a new incident detection method that combines HO and GLR techniques. The combined HO-GLR method can produce better incident detection, improve traffic safety, and enhance traffic management systems. We have validated the effectiveness of the proposed method using simulated traffic data generated from the Ayer Rajah Expressway in Singapore and a real-world dataset from the I-880 freeway of California. The performance metrics used to evaluate the performance of the proposed method includes detection rate, false alarm rate, classification rate, mean time to detection and the area under receiving operating characteristics curve. The experimental results show that the proposed method has obtained better performance in all of the criteria when compared with other well-known methods.

Suggested Citation

  • Sheikh, Muhammad Sameer & Regan, Amelia, 2022. "A complex network analysis approach for estimation and detection of traffic incidents based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
  • Handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007779
    DOI: 10.1016/j.physa.2021.126504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121007779
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    2. Li, Jiawei & Wen, Xiangxi & Wu, Minggong & Liu, Fei & Li, Shuangfeng, 2020. "Identification of key nodes and vital edges in aviation network based on minimum connected dominating set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    3. Jiang, Xurui & Wen, Xiangxi & Wu, Minggong & Song, Min & Tu, Congliang, 2019. "A complex network analysis approach for identifying air traffic congestion based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 364-381.
    4. Nakamura, Tomomichi & Tanizawa, Toshihiro, 2012. "Networks with time structure from time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4704-4710.
    5. Wang, Zhengli & Qi, Xin & Jiang, Hai, 2018. "Estimating the spatiotemporal impact of traffic incidents: An integer programming approach consistent with the propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 356-369.
    6. Xiao, Jianli, 2019. "SVM and KNN ensemble learning for traffic incident detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 29-35.
    7. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    8. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    9. Yan, Ying & Zhang, Shen & Tang, Jinjun & Wang, Xiaofei, 2017. "Understanding characteristics in multivariate traffic flow time series from complex network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 149-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qianlin & Han, Jiaqi & Chen, Feng & Hu, Su & Yun, Cheng & Dou, Zhan & Yan, Tingjun & Yang, Guoan, 2024. "Modeling risk characterization networks for chemical processes based on multi-variate data," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Jiang, Xurui & Wen, Xiangxi & Wu, Minggong & Song, Min & Tu, Congliang, 2019. "A complex network analysis approach for identifying air traffic congestion based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 364-381.
    3. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    4. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    5. Yan, Ying & Zhang, Shen & Tang, Jinjun & Wang, Xiaofei, 2017. "Understanding characteristics in multivariate traffic flow time series from complex network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 149-160.
    6. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    7. Wang, Jin-Fa & He, Xuan & Si, Shuai-Zong & Zhao, Hai & Zheng, Chunyang & Yu, Hao, 2019. "Using complex network theory for temporal locality in network traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 722-736.
    8. Tang, Jinjun & Zhang, Shen & Chen, Xinqiang & Liu, Fang & Zou, Yajie, 2018. "Taxi trips distribution modeling based on Entropy-Maximizing theory: A case study in Harbin city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 430-443.
    9. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gao, Jun, 2019. "Dynamic identification of urban traffic congestion warning communities in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 98-111.
    10. Li, Jiawei & Wen, Xiangxi & Wu, Minggong & Liu, Fei & Li, Shuangfeng, 2020. "Identification of key nodes and vital edges in aviation network based on minimum connected dominating set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    11. Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
    12. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    13. Tang, Jinjun & Liu, Fang & Zhang, Weibin & Zhang, Shen & Wang, Yinhai, 2016. "Exploring dynamic property of traffic flow time series in multi-states based on complex networks: Phase space reconstruction versus visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 635-648.
    14. Chandra, Aitichya & Verma, Ashish & Sooraj, K.P. & Padhi, Radhakant, 2023. "Modelling and assessment of the arrival and departure process at the terminal area: A case study of Chennai international airport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    15. Liu, Hongzhi & Zhang, Xie & Hu, Huaqing & Zhang, Xingchen, 2022. "Exploring the impact of flow values on multiscale complexity quantification of airport flight flow fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    16. Junjie Fu & Xinqiang Chen & Shubo Wu & Chaojian Shi & Huafeng Wu & Jiansen Zhao & Pengwen Xiong, 2020. "Mining ship deficiency correlations from historical port state control (PSC) inspection data," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-19, February.
    17. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    18. Yao, Can-Zhong & Lin, Ji-Nan & Zheng, Xu-Zhou & Liu, Xiao-Feng, 2015. "The study of RMB exchange rate complex networks based on fluctuation mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 359-376.
    19. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    20. Nicholas Fiorentini & Massimo Losa, 2020. "Long-Term-Based Road Blackspot Screening Procedures by Machine Learning Algorithms," Sustainability, MDPI, vol. 12(15), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.