IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v538y2020ics0378437119316723.html
   My bibliography  Save this article

Visibility graph analysis of Bitcoin price series

Author

Listed:
  • Liu, Keshi
  • Weng, Tongfeng
  • Gu, Changgui
  • Yang, Huijie

Abstract

The Bitcoin market attracts special attentions for its inspirational advantages over the traditional currency system. It can be regarded also as a typical social experiment of rare item markets. Analyzing the records for Bitcoin price can deepen our understanding of this market and provide us a useful reference for rare item markets. In this paper, by means of the visibility graph algorithm we display multi-scale patterns of visible relationships in Bitcoin volatility series. It is found that the visibility graph of Bitcoin is scale-free and has a hierarchical structure. At different time scales, the system works subsequently with an identical dynamical mechanism. These behaviors are shared by other virtual currencies and even the gold price series.

Suggested Citation

  • Liu, Keshi & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2020. "Visibility graph analysis of Bitcoin price series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
  • Handle: RePEc:eee:phsmap:v:538:y:2020:i:c:s0378437119316723
    DOI: 10.1016/j.physa.2019.122952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119316723
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
    2. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    3. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    4. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    5. Yang, Yue & Wang, Jianbo & Yang, Huijie & Mang, Jingshi, 2009. "Visibility graph approach to exchange rate series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4431-4437.
    6. Yang, Yue & Yang, Huijie, 2008. "Complex network-based time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1381-1386.
    7. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhipeng & Zhang, Shuguang & Hu, Jun & Dai, Fei, 2024. "An adaptive time series segmentation algorithm based on visibility graph and particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    2. Partida, Alberto & Gerassis, Saki & Criado, Regino & Romance, Miguel & Giráldez, Eduardo & Taboada, Javier, 2022. "The chaotic, self-similar and hierarchical patterns in Bitcoin and Ethereum price series," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Davide Provenzano & Rodolfo Baggio, 2021. "Complexity traits and synchrony of cryptocurrencies price dynamics," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 941-955, December.
    4. Cao, Run-Hua & Deng, Zheng-Hong & Xu, Ji-Wei, 2022. "Analysis of precipitation characteristics in Shanghai based on the visibility graph algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    5. Gao, Meng & Ge, Ruijun, 2024. "Mapping time series into signed networks via horizontal visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    6. Zhu, Jia & Wei, Daijun, 2021. "Analysis of stock market based on visibility graph and structure entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 576(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    2. Davide Provenzano & Rodolfo Baggio, 2021. "Complexity traits and synchrony of cryptocurrencies price dynamics," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 941-955, December.
    3. Fang, Wen & Tian, Shaolin & Wang, Jun, 2018. "Multiscale fluctuations and complexity synchronization of Bitcoin in China and US markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 109-120.
    4. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    5. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    6. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
    7. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    8. Derick Quintino & Jessica Campoli & Heloisa Burnquist & Paulo Ferreira, 2020. "Efficiency of the Brazilian Bitcoin: A DFA Approach," IJFS, MDPI, vol. 8(2), pages 1-9, April.
    9. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    10. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    11. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    12. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    13. Kosc, Krzysztof & Sakowski, Paweł & Ślepaczuk, Robert, 2019. "Momentum and contrarian effects on the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 691-701.
    14. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    15. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Olubusoye, Olusanya E., 2019. "How persistent and dynamic inter-dependent are pricing of Bitcoin to other cryptocurrencies before and after 2017/18 crash?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    16. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    17. Alves, P.R.L., 2020. "Dynamic characteristic of Bitcoin cryptocurrency in the reconstruction scheme," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    18. ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
    19. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    20. Levulytė, Laura & Šapkauskienė, Alfreda, 2021. "Cryptocurrency in context of fiat money functions," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 44-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:538:y:2020:i:c:s0378437119316723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.