IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v403y2014icp1-12.html
   My bibliography  Save this article

A visibility graph averaging aggregation operator

Author

Listed:
  • Chen, Shiyu
  • Hu, Yong
  • Mahadevan, Sankaran
  • Deng, Yong

Abstract

The problem of aggregation is of considerable importance in many disciplines. In this paper, a new type of operator called visibility graph averaging (VGA) aggregation operator is proposed. This proposed operator is based on the visibility graph which can convert a time series into a graph. The weights are obtained according to the importance of the data in the visibility graph. Finally, the VGA operator is used in the analysis of the TAIEX database to illustrate that it is practical and compared with the classic aggregation operators, it shows its advantage that it not only implements the aggregation of the data purely, but also conserves the time information. Meanwhile, the determination of the weights is more reasonable.

Suggested Citation

  • Chen, Shiyu & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A visibility graph averaging aggregation operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 1-12.
  • Handle: RePEc:eee:phsmap:v:403:y:2014:i:c:p:1-12
    DOI: 10.1016/j.physa.2014.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114001162
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Telesca, Luciano & Lovallo, Michele & Ramirez-Rojas, Alejandro & Flores-Marquez, Leticia, 2013. "Investigating the time dynamics of seismicity by using the visibility graph approach: Application to seismicity of Mexican subduction zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6571-6577.
    2. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    3. Fan, Chao & Guo, Jin-Li & Zha, Yi-Long, 2012. "Fractal analysis on human dynamics of library loans," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6617-6625.
    4. Gutin, Gregory & Mansour, Toufik & Severini, Simone, 2011. "A characterization of horizontal visibility graphs and combinatorics on words," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2421-2428.
    5. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    6. Cheng, Ching-Hsue & Wei, Liang-Ying & Liu, Jing-Wei & Chen, Tai-Liang, 2013. "OWA-based ANFIS model for TAIEX forecasting," Economic Modelling, Elsevier, vol. 30(C), pages 442-448.
    7. Liu, Chuang & Zhou, Wei-Xing & Yuan, Wei-Kang, 2010. "Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2675-2681.
    8. Yang, Yue & Wang, Jianbo & Yang, Huijie & Mang, Jingshi, 2009. "Visibility graph approach to exchange rate series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4431-4437.
    9. Ahmadlou, Mehran & Adeli, Hojjat & Adeli, Amir, 2012. "Improved visibility graph fractality with application for the diagnosis of Autism Spectrum Disorder," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4720-4726.
    10. Wang, Na & Li, Dong & Wang, Qiwen, 2012. "Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6543-6555.
    11. Kim, Daehyun & Phillips, Jonathan D., 2013. "Predicting the structure and mode of vegetation dynamics: An application of graph theory to state-and-transition models," Ecological Modelling, Elsevier, vol. 265(C), pages 64-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Rong & Ashuri, Baabak & Shyr, Yu & Deng, Yong, 2018. "Forecasting Construction Cost Index based on visibility graph: A network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 239-252.
    2. Liu, Hao-Ran & Li, Ming-Xia & Zhou, Wei-Xing, 2024. "Visibility graph analysis of the grains and oilseeds indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    3. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    4. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2017. "A novel weight determination method for time series data aggregation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 42-55.
    5. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O’Pella, Justin, 2019. "Horizontal visibility graphs are uniquely determined by their directed degree sequence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    2. Lihua Liu & Jing Huang & Huimin Wang, 2020. "Visibility Graph Power Geometric Aggregation Operator and Its Application in Water, Energy and Food Efficiency Evaluation," IJERPH, MDPI, vol. 17(11), pages 1-16, May.
    3. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    4. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    5. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    6. Mondal, Mitali & Mondal, Arindam & Mondal, Joyati & Patra, Kanchan Kumar & Deb, Argha & Ghosh, Dipak, 2018. "Evidence of centrality dependent fractal behavior in high energy heavy ion interactions: Hint of two different sources," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 230-237.
    7. Sainaghi, Ruggero & Baggio, Rodolfo, 2017. "Complexity traits and dynamics of tourism destinations," Tourism Management, Elsevier, vol. 63(C), pages 368-382.
    8. Liu, Hao-Ran & Li, Ming-Xia & Zhou, Wei-Xing, 2024. "Visibility graph analysis of the grains and oilseeds indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    9. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    10. An, Haizhong & Gao, Xiangyun & Fang, Wei & Huang, Xuan & Ding, Yinghui, 2014. "The role of fluctuating modes of autocorrelation in crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 382-390.
    11. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    12. Bezsudnov, I.V. & Snarskii, A.A., 2014. "From the time series to the complex networks: The parametric natural visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 53-60.
    13. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    14. Chen, Yahong & Li, Jinlin & Huang, He & Ran, Lun & Hu, Yusheng, 2017. "Encouraging information sharing to boost the name-your-own-price auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 108-117.
    15. Zhang, Rong & Ashuri, Baabak & Shyr, Yu & Deng, Yong, 2018. "Forecasting Construction Cost Index based on visibility graph: A network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 239-252.
    16. Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
    17. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    18. Ömer Akgüller & Mehmet Ali Balcı & Larissa M. Batrancea & Lucian Gaban, 2023. "Path-Based Visibility Graph Kernel and Application for the Borsa Istanbul Stock Network," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    19. Wang, Yanhui & Bi, Lifeng & Lin, Shuai & Li, Man & Shi, Hao, 2017. "A complex network-based importance measure for mechatronics systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 180-198.
    20. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:403:y:2014:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.