IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v105y2009i1p1-6.html
   My bibliography  Save this article

Detection of non-linear structure in time series

Author

Listed:
  • Matilla-García, Mariano
  • Ruiz Marín, Manuel

Abstract

In this paper we introduce a new method to detect lags in time series by using permutation entropy. The method is applied to several well-known dynamic processes. The good power performance of the new method in detecting memory structure/lags is notable and gives rise to an expectation that it may form a suitable basis for constructive specification searches.

Suggested Citation

  • Matilla-García, Mariano & Ruiz Marín, Manuel, 2009. "Detection of non-linear structure in time series," Economics Letters, Elsevier, vol. 105(1), pages 1-6, October.
  • Handle: RePEc:eee:ecolet:v:105:y:2009:i:1:p:1-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(09)00124-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. W. Granger & E. Maasoumi & J. Racine, 2004. "A Dependence Metric for Possibly Nonlinear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 649-669, September.
    2. Clive Granger & Jin‐Lung Lin, 1994. "Using The Mutual Information Coefficient To Identify Lags In Nonlinear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(4), pages 371-384, July.
    3. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Henry & George Judge, 2019. "Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series," Econometrics, MDPI, vol. 7(1), pages 1-16, March.
    2. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2020. "Multiscale complexity analysis on airport air traffic flow volume time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    3. Herrera Gómez, Marcos & Ruiz Marín, Manuel & Mur Lacambra, Jesús, 2014. "Testing Spatial Causality in Cross-section Data," MPRA Paper 56678, University Library of Munich, Germany.
    4. Traversaro, Francisco & Ciarrocchi, Nicolás & Cattaneo, Florencia Pollo & Redelico, Francisco, 2019. "Comparing different approaches to compute Permutation Entropy with coarse time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 635-643.
    5. Helmut Elsinger, 2010. "Independence Tests based on Symbolic Dynamics," Working Papers 165, Oesterreichische Nationalbank (Austrian Central Bank).
    6. Yongmiao Hong & Xia Wang & Wenjie Zhang & Shouyang Wang, 2017. "An efficient integrated nonparametric entropy estimator of serial dependence," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 728-780, October.
    7. Marcos Herrera & Manuel Ruiz & Jesús Mur, 2013. "Detecting Dependence Between Spatial Processes," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(4), pages 469-497, February.
    8. Marcos Herrera & Jesús Mur & Manuel Ruiz, 2016. "Detecting causal relationships between spatial processes," Papers in Regional Science, Wiley Blackwell, vol. 95(3), pages 577-594, August.
    9. Matilla-García, Mariano & Marín, Manuel Ruiz & Dore, Mohammed I., 2014. "A permutation entropy based test for causality: The volume–stock price relation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 280-288.
    10. Weiß, Christian H. & Ruiz Marín, Manuel & Keller, Karsten & Matilla-García, Mariano, 2022. "Non-parametric analysis of serial dependence in time series using ordinal patterns," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    11. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    12. repec:onb:oenbwp:y::i:165:b:1 is not listed on IDEAS
    13. Yoon, Gawon, 2010. "Do real exchange rates really follow threshold autoregressive or exponential smooth transition autoregressive models?," Economic Modelling, Elsevier, vol. 27(2), pages 605-612, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoon, Gawon, 2010. "Do real exchange rates really follow threshold autoregressive or exponential smooth transition autoregressive models?," Economic Modelling, Elsevier, vol. 27(2), pages 605-612, March.
    2. Dionisio, Andreia & Menezes, Rui & Mendes, Diana & Vidigal Da Silva, Jacinto, 2007. "Nonlinear Dynamics Within Macroeconomic Factors And Stock Market In Portugal, 1993-2003," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 7(2), pages 57-70.
    3. Matilla-García, Mariano & Marín, Manuel Ruiz, 2010. "A new test for chaos and determinism based on symbolic dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 600-614, December.
    4. Neshat Beheshti & Jeffrey S. Racine & Ehsan S. Soofi, 2015. "Information Measures for Nonparametric Kernel Estimation," Department of Economics Working Papers 2015-03, McMaster University.
    5. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    6. Yongmiao Hong & Xia Wang & Wenjie Zhang & Shouyang Wang, 2017. "An efficient integrated nonparametric entropy estimator of serial dependence," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 728-780, October.
    7. Diks Cees & Panchenko Valentyn, 2008. "Rank-based Entropy Tests for Serial Independence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-21, March.
    8. Cees Diks & Valentyn Panchenko, 2005. "Nonparametric Tests for Serial Independence Based on Quadratic Forms," Tinbergen Institute Discussion Papers 05-076/1, Tinbergen Institute.
    9. Menezes, Rui & Dionísio, Andreia & Hassani, Hossein, 2012. "On the globalization of stock markets: An application of Vector Error Correction Model, Mutual Information and Singular Spectrum Analysis to the G7 countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 369-384.
    10. Heather M. Anderson, 2002. "Choosing Lag Lengths in Nonlinear Dynamic Models," Monash Econometrics and Business Statistics Working Papers 21/02, Monash University, Department of Econometrics and Business Statistics.
    11. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.
    12. Henry Lam, 2018. "Sensitivity to Serial Dependency of Input Processes: A Robust Approach," Management Science, INFORMS, vol. 64(3), pages 1311-1327, March.
    13. Paulo Ferreira, 2012. "Testing serial dependence in the stock markets of the G7 countries, Portugal, Spain and Greece," CEFAGE-UE Working Papers 2012_24, University of Evora, CEFAGE-UE (Portugal).
    14. Wahbeeah Mohti & Andreia Dionísio & Paulo Ferreira & Isabel Vieira, 2019. "Frontier markets’ efficiency: mutual information and detrended fluctuation analyses," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 551-572, September.
    15. repec:wyi:journl:002087 is not listed on IDEAS
    16. Herrera Gómez, Marcos & Ruiz Marín, Manuel & Mur Lacambra, Jesús, 2014. "Testing Spatial Causality in Cross-section Data," MPRA Paper 56678, University Library of Munich, Germany.
    17. Piotr Fiszeder & Witold Orzeszko, 2012. "Nonparametric Verification of GARCH-Class Models for Selected Polish Exchange Rates and Stock Indices," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(5), pages 430-449, November.
    18. Elsinger, Helmut, 2013. "Comment on: A non-parametric spatial independence test using symbolic entropy," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 838-840.
    19. Luca Bagnato & Valerio Potì & Maria Zoia, 2015. "The role of orthogonal polynomials in adjusting hyperpolic secant and logistic distributions to analyse financial asset returns," Statistical Papers, Springer, vol. 56(4), pages 1205-1234, November.
    20. Mariano Matilla‐García & José Miguel Rodríguez & Manuel Ruiz Marín, 2010. "A symbolic test for testing independence between time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 76-85, March.
    21. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:105:y:2009:i:1:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.