IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v86y2024i4p833-855.html
   My bibliography  Save this article

A New Approach to Forecasting the Probability of Recessions after the COVID‐19 Pandemic

Author

Listed:
  • Maximo Camacho
  • Salvador Ramallo
  • Manuel Ruiz

Abstract

Standard recession forecasting based on economic indicators has become unsettled due to COVID‐19 pandemic's limited but influential data. This paper proposes a new non‐parametric approach to computing predictive probabilities of future recessions that is robust to influential observations and other data irregularities. The method simulates forecasts using past data histories embedded into a symbolic space. Then, the forecasts are converted into probability statements, which are weighted by the forecast probabilities of their respective symbols. Using GDP data from G7, our proposal outperforms other parametric approaches in classifying future national business cycle phases, especially including data from 2020 in the sample.

Suggested Citation

  • Maximo Camacho & Salvador Ramallo & Manuel Ruiz, 2024. "A New Approach to Forecasting the Probability of Recessions after the COVID‐19 Pandemic," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(4), pages 833-855, August.
  • Handle: RePEc:bla:obuest:v:86:y:2024:i:4:p:833-855
    DOI: 10.1111/obes.12616
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12616
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcelle Chauvet & James D. Hamilton, 2006. "Dating Business Cycle Turning Points," Contributions to Economic Analysis, in: Nonlinear Time Series Analysis of Business Cycles, pages 1-54, Emerald Group Publishing Limited.
    2. Maximo Camacho & Gabriel Perez-Quiros, 2002. "This is what the leading indicators lead," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(1), pages 61-80.
    3. Matilla-García, Mariano & Marín, Manuel Ruiz & Dore, Mohammed I., 2014. "A permutation entropy based test for causality: The volume–stock price relation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 280-288.
    4. Wecker, William E, 1979. "Predicting the Turning Points of a Time Series," The Journal of Business, University of Chicago Press, vol. 52(1), pages 35-50, January.
    5. Serena Ng, 2021. "Modeling Macroeconomic Variations after Covid-19," NBER Working Papers 29060, National Bureau of Economic Research, Inc.
    6. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    7. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    8. Camacho, Maximo & Romeu, Andres & Ruiz-Marin, Manuel, 2021. "Symbolic transfer entropy test for causality in longitudinal data," Economic Modelling, Elsevier, vol. 94(C), pages 649-661.
    9. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    10. Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
    11. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    12. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paap, Richard & Segers, Rene & van Dijk, Dick, 2009. "Do Leading Indicators Lead Peaks More Than Troughs?," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 528-543.
    2. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    3. Maximo Camacho, 2004. "Vector smooth transition regression models for US GDP and the composite index of leading indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(3), pages 173-196.
    4. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    5. Chun-Chang Lee & Chih-Min Liang & Hsing-Jung Chou, 2013. "Identifying Taiwan real estate cycle turning points- An application of the multivariate Markov-switching autoregressive Model," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 3(2), pages 1-1.
    6. Dagum, Estela Bee, 2010. "Business Cycles and Current Economic Analysis/Los ciclos económicos y el análisis económico actual," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 577-594, Diciembre.
    7. Reuben Ellul, "undated". "Timing the Maltese business cycle: A historical perspective," CBM Working Papers WP/01/2021, Central Bank of Malta.
    8. Maximo Camacho & Gabriel Perez-Quiros, 2002. "This is what the leading indicators lead," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(1), pages 61-80.
    9. Gianluca Cubadda, 2007. "A Reduced Rank Regression Approach to Coincident and Leading Indexes Building," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(2), pages 271-292, April.
    10. Guérin, Pierre & Leiva-Leon, Danilo, 2017. "Model averaging in Markov-switching models: Predicting national recessions with regional data," Economics Letters, Elsevier, vol. 157(C), pages 45-49.
    11. Jean-michel Sahut & Medhi Mili & Frédéric Teulon, 2012. "What is the linkage between real growth in the Euro area and global financial market conditions?," Economics Bulletin, AccessEcon, vol. 32(3), pages 2464-2480.
    12. Simpson, Paul W & Osborn, Denise R & Sensier, Marianne, 2001. "Forecasting UK Industrial Production over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 405-424, September.
    13. Juan Laborda & Sonia Ruano & Ignacio Zamanillo, 2023. "Multi-Country and Multi-Horizon GDP Forecasting Using Temporal Fusion Transformers," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    14. Moradi, Alireza, 2016. "Modeling Business Cycle Fluctuations through Markov Switching VAR:An Application to Iran," MPRA Paper 73608, University Library of Munich, Germany.
    15. Duprey, Thibaut & Klaus, Benjamin & Peltonen, Tuomas, 2017. "Dating systemic financial stress episodes in the EU countries," Journal of Financial Stability, Elsevier, vol. 32(C), pages 30-56.
    16. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    17. Mili, Mehdi & Sahut, Jean-Michel & Teulon, Frédéric, 2012. "Non linear and asymmetric linkages between real growth in the Euro area and global financial market conditions: New evidence," Economic Modelling, Elsevier, vol. 29(3), pages 734-741.
    18. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    19. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    20. Ana Beatriz Galvão & Michael Artis & Massimiliano Marcellino, 2007. "The transmission mechanism in a changing world," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 39-61.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:86:y:2024:i:4:p:833-855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.