IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v168y2022ics0167947321002152.html
   My bibliography  Save this article

Non-parametric analysis of serial dependence in time series using ordinal patterns

Author

Listed:
  • Weiß, Christian H.
  • Ruiz Marín, Manuel
  • Keller, Karsten
  • Matilla-García, Mariano

Abstract

A list of new tests for serial dependence based on ordinal patterns is provided. These new methods rely exclusively on the order structure of the data sets. Hence, the novel tests are stable under monotone transformations of the time series and robust against small perturbations or measurement errors. The standard asymptotic distributions are given, and their finite sample behavior under linear and non-linear departures from the null of independence are studied. Moreover, it is proved that under mild conditions, any ordinal-pattern-based test is nuisance free, which is appealing for modeling, as these tests can eventually be used as misspecification tests. This property is also analyzed for finite samples and illustrated through an empirical application. Much of the discussion is based on a detailed combinatorial analysis of ordinal pattern probabilities.

Suggested Citation

  • Weiß, Christian H. & Ruiz Marín, Manuel & Keller, Karsten & Matilla-García, Mariano, 2022. "Non-parametric analysis of serial dependence in time series using ordinal patterns," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:csdana:v:168:y:2022:i:c:s0167947321002152
    DOI: 10.1016/j.csda.2021.107381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321002152
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2021. "Choosing the frequency of volatility components within the Double Asymmetric GARCH–MIDAS–X model," Econometrics and Statistics, Elsevier, vol. 20(C), pages 12-28.
    2. Sinn, Mathieu & Keller, Karsten, 2011. "Estimation of ordinal pattern probabilities in Gaussian processes with stationary increments," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1781-1790, April.
    3. Mariano Matilla‐García & José Miguel Rodríguez & Manuel Ruiz Marín, 2010. "A symbolic test for testing independence between time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 76-85, March.
    4. Matilla-García, Mariano & Marín, Manuel Ruiz & Dore, Mohammed I., 2014. "A permutation entropy based test for causality: The volume–stock price relation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 280-288.
    5. M. Victoria Caballero-Pintado & Mariano Matilla-García & Manuel Ruiz Marín, 2019. "Symbolic correlation integral," Econometric Reviews, Taylor & Francis Journals, vol. 38(5), pages 533-556, May.
    6. Alexander Schnurr & Herold Dehling, 2017. "Testing for Structural Breaks via Ordinal Pattern Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 706-720, April.
    7. Matilla-García, Mariano & Ruiz Marín, Manuel, 2009. "Detection of non-linear structure in time series," Economics Letters, Elsevier, vol. 105(1), pages 1-6, October.
    8. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.
    9. Ingo Klein & Monika Doll, 2021. "Tests on asymmetry for ordered categorical variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(7), pages 1180-1198, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando López & Mariano Matilla-García & Jesús Mur & Manuel Ruiz Marín, 2021. "Statistical Tests of Symbolic Dynamics," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    2. repec:onb:oenbwp:y::i:165:b:1 is not listed on IDEAS
    3. Helmut Elsinger, 2010. "Independence Tests based on Symbolic Dynamics," Working Papers 165, Oesterreichische Nationalbank (Austrian Central Bank).
    4. Herrera Gómez, Marcos & Ruiz Marín, Manuel & Mur Lacambra, Jesús, 2014. "Testing Spatial Causality in Cross-section Data," MPRA Paper 56678, University Library of Munich, Germany.
    5. Schnurr, Alexander & Fischer, Svenja, 2022. "Generalized ordinal patterns allowing for ties and their applications in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    6. Betken, Annika & Dehling, Herold & Nüßgen, Ines & Schnurr, Alexander, 2021. "Ordinal pattern dependence as a multivariate dependence measure," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    7. Yongmiao Hong & Xia Wang & Wenjie Zhang & Shouyang Wang, 2017. "An efficient integrated nonparametric entropy estimator of serial dependence," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 728-780, October.
    8. Christoph Bandt, 2020. "Order patterns, their variation and change points in financial time series and Brownian motion," Statistical Papers, Springer, vol. 61(4), pages 1565-1588, August.
    9. Marcos Herrera & Jesús Mur & Manuel Ruiz, 2016. "Detecting causal relationships between spatial processes," Papers in Regional Science, Wiley Blackwell, vol. 95(3), pages 577-594, August.
    10. Camacho, Maximo & Romeu, Andres & Ruiz-Marin, Manuel, 2021. "Symbolic transfer entropy test for causality in longitudinal data," Economic Modelling, Elsevier, vol. 94(C), pages 649-661.
    11. Marcos Herrera & Manuel Ruiz & Jesús Mur, 2013. "Detecting Dependence Between Spatial Processes," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(4), pages 469-497, February.
    12. Christoph Bandt, 2019. "Order patterns, their variation and change points in financial time series and Brownian motion," Papers 1910.09978, arXiv.org.
    13. Yoon, Gawon, 2010. "Do real exchange rates really follow threshold autoregressive or exponential smooth transition autoregressive models?," Economic Modelling, Elsevier, vol. 27(2), pages 605-612, March.
    14. Annika Betken & Jannis Buchsteiner & Herold Dehling & Ines Münker & Alexander Schnurr & Jeannette H.C. Woerner, 2021. "Ordinal patterns in long‐range dependent time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 969-1000, September.
    15. Matilla-García, Mariano & Marín, Manuel Ruiz & Dore, Mohammed I., 2014. "A permutation entropy based test for causality: The volume–stock price relation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 280-288.
    16. Miguel Henry & George Judge, 2019. "Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series," Econometrics, MDPI, vol. 7(1), pages 1-16, March.
    17. Alexander Schnurr, 2015. "An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series," Papers 1502.07321, arXiv.org.
    18. Elsinger, Helmut, 2013. "Comment on: A non-parametric spatial independence test using symbolic entropy," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 838-840.
    19. V. Candila & O. Cepni & G. M. Gallo & R. Gupta, 2024. "Influence of Local and Global Economic Policy Uncertainty on the volatility of US state-level equity returns: Evidence from a GARCH-MIDAS approach with Shrinkage and Cluster Analysis," Working Paper CRENoS 202414, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    20. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    21. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:168:y:2022:i:c:s0167947321002152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.