IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v393y2014icp579-589.html
   My bibliography  Save this article

Comparison of directed and weighted co-occurrence networks of six languages

Author

Listed:
  • Gao, Yuyang
  • Liang, Wei
  • Shi, Yuming
  • Huang, Qiuling

Abstract

To study commonalities and differences among different languages, we select 100 reports from the documents of the United Nations, each of which was written in Arabic, Chinese, English, French, Russian and Spanish languages, separately. Based on these corpora, we construct 6 weighted and directed word co-occurrence networks. Besides all the networks exhibit scale-free and small-world features, we find several new non-trivial results, including connections among English words are denser, and the expression of English language is more flexible and powerful; the connection way among Spanish words is more stringent and this indicates that the Spanish grammar is more rigorous; values of many statistical parameters of the French and Spanish networks are very approximate and this shows that these two languages share many commonalities; Arabic and Russian words have many varieties, which result in rich types of words and a sparse connection among words; connections among Chinese words obey a more uniform distribution, and one inclines to use the least number of Chinese words to express the same complex information as those in other five languages. This shows that the expression of Chinese language is quite concise. In addition, several topics worth further investigating by the complex network approach have been observed in this study.

Suggested Citation

  • Gao, Yuyang & Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Comparison of directed and weighted co-occurrence networks of six languages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 579-589.
  • Handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:579-589
    DOI: 10.1016/j.physa.2013.08.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711300825X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.08.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng, Long & Li, Chunguang, 2009. "English and Chinese languages as weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2561-2570.
    2. Chen, Yong-Zhou & Li, Nan & He, Da-Ren, 2007. "A study on some urban bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 747-754.
    3. Andreas Wagner, 2001. "The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes," Working Papers 01-04-022, Santa Fe Institute.
    4. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    5. Steve Lawrence & C. Lee Giles, 1999. "Accessibility of information on the web," Nature, Nature, vol. 400(6740), pages 107-107, July.
    6. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    7. Liang, Wei & Shi, Yuming & Tse, Chi K. & Liu, Jing & Wang, Yanli & Cui, Xunqiang, 2009. "Comparison of co-occurrence networks of the Chinese and English languages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4901-4909.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teerasak Charoennapharat & Poti Chaopaisarn, 2022. "Factors Affecting Multimodal Transport during COVID-19: A Thai Service Provider Perspective," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    2. Jiang, Jingchi & Zheng, Jichuan & Zhao, Chao & Su, Jia & Guan, Yi & Yu, Qiubin, 2016. "Clinical-decision support based on medical literature: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 42-54.
    3. Quispe, Laura V.C. & Tohalino, Jorge A.V. & Amancio, Diego R., 2021. "Using virtual edges to improve the discriminability of co-occurrence text networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    4. Garg, Muskan & Kumar, Mukesh, 2018. "The structure of word co-occurrence network for microblogs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 698-720.
    5. Gamallo, Pablo & Pichel, José Ramom & Alegria, Iñaki, 2017. "From language identification to language distance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 152-162.
    6. Mehri, Ali & Jamaati, Maryam, 2021. "Statistical metrics for languages classification: A case study of the Bible translations," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Lanfang & Jiang, Lu & Li, Menghui & He, Dacheng, 2006. "Statistical analysis of gene regulatory networks reconstructed from gene expression data of lung cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 663-671.
    2. Liang, Wei & Shi, Yuming & Tse, Chi K. & Liu, Jing & Wang, Yanli & Cui, Xunqiang, 2009. "Comparison of co-occurrence networks of the Chinese and English languages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4901-4909.
    3. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    4. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    5. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    6. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    7. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    8. Foti, Nicholas J. & Pauls, Scott & Rockmore, Daniel N., 2013. "Stability of the World Trade Web over time – An extinction analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1889-1910.
    9. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    10. Carbone, Anna & Jensen, Meiko & Sato, Aki-Hiro, 2016. "Challenges in data science: a complex systems perspective," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 1-7.
    11. Caccioli, Fabio & Farmer, J. Doyne & Foti, Nick & Rockmore, Daniel, 2015. "Overlapping portfolios, contagion, and financial stability," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 50-63.
    12. Tsuchiya, Masa & Selvarajoo, Kumar & Piras, Vincent & Tomita, Masaru & Giuliani, Alessandro, 2009. "Local and global responses in complex gene regulation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1738-1746.
    13. Yuji Yamamoto & Keiko Yokoyama, 2011. "Common and Unique Network Dynamics in Football Games," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-6, December.
    14. Eleanor R Brush & David C Krakauer & Jessica C Flack, 2013. "A Family of Algorithms for Computing Consensus about Node State from Network Data," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-17, July.
    15. LaRocca, Sarah & Guikema, Seth D., 2015. "Characterizing and predicting the robustness of power-law networks," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 157-166.
    16. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    17. N. Foti & S. Pauls & Daniel N. Rockmore, 2011. "Stability of the World Trade Web over Time - An Extinction Analysis," Papers 1104.4380, arXiv.org, revised May 2011.
    18. How to Reconstruct a Large Genetic Network from n Gene Perturbations in Fewer than n2 Easy Steps, 2001. "How to Reconstruct a Large Genetic Network from," Working Papers 01-09-047, Santa Fe Institute.
    19. John Platig & Peter J Castaldi & Dawn DeMeo & John Quackenbush, 2016. "Bipartite Community Structure of eQTLs," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-17, September.
    20. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:579-589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.