IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0029638.html
   My bibliography  Save this article

Common and Unique Network Dynamics in Football Games

Author

Listed:
  • Yuji Yamamoto
  • Keiko Yokoyama

Abstract

The sport of football is played between two teams of eleven players each using a spherical ball. Each team strives to score by driving the ball into the opposing goal as the result of skillful interactions among players. Football can be regarded from the network perspective as a competitive relationship between two cooperative networks with a dynamic network topology and dynamic network node. Many complex large-scale networks have been shown to have topological properties in common, based on a small-world network and scale-free network models. However, the human dynamic movement pattern of this network has never been investigated in a real-world setting. Here, we show that the power law in degree distribution emerged in the passing behavior in the 2006 FIFA World Cup Final and an international “A” match in Japan, by describing players as vertices connected by links representing passes. The exponent values are similar to the typical values that occur in many real-world networks, which are in the range of , and are larger than that of a gene transcription network, . Furthermore, we reveal the stochastically switched dynamics of the hub player throughout the game as a unique feature in football games. It suggests that this feature could result not only in securing vulnerability against intentional attack, but also in a power law for self-organization. Our results suggest common and unique network dynamics of two competitive networks, compared with the large-scale networks that have previously been investigated in numerous works. Our findings may lead to improved resilience and survivability not only in biological networks, but also in communication networks.

Suggested Citation

  • Yuji Yamamoto & Keiko Yokoyama, 2011. "Common and Unique Network Dynamics in Football Games," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-6, December.
  • Handle: RePEc:plo:pone00:0029638
    DOI: 10.1371/journal.pone.0029638
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029638
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0029638&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0029638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narizuka, Takuma & Yamamoto, Ken & Yamazaki, Yoshihiro, 2014. "Statistical properties of position-dependent ball-passing networks in football games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 157-168.
    2. Clemente, Filipe Manuel & Sarmento, Hugo & Aquino, Rodrigo, 2020. "Player position relationships with centrality in the passing network of world cup soccer teams: Win/loss match comparisons," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Carlota Torrents & Angel Ric & Robert Hristovski & Lorena Torres-Ronda & Emili Vicente & Jaime Sampaio, 2016. "Emergence of Exploratory, Technical and Tactical Behavior in Small-Sided Soccer Games when Manipulating the Number of Teammates and Opponents," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-15, December.
    4. Sergio Caicedo-Parada & Carlos Lago-Peñas & Enrique Ortega-Toro, 2020. "Passing Networks and Tactical Action in Football: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    5. Joseph D O’Brien & James P Gleeson & David J P O’Sullivan, 2021. "Identification of skill in an online game: The case of Fantasy Premier League," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.
    6. Pereira, Luis Ramada & Lopes, Rui J. & Louçã, Jorge & Araújo, Duarte & Ramos, João, 2021. "The soccer game, bit by bit: An information-theoretic analysis," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    2. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    3. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    4. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    5. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    6. Heath Henderson & Arnob Alam, 2022. "The structure of risk-sharing networks," Empirical Economics, Springer, vol. 62(2), pages 853-886, February.
    7. Dan Braha & Yaneer Bar-Yam, 2004. "Information Flow Structure in Large-Scale Product Development Organizational Networks," Industrial Organization 0407012, University Library of Munich, Germany.
    8. Wang, Li-Na & Wang, Kai & Shen, Jiang-Long, 2020. "Weighted complex networks in urban public transportation: Modeling and testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    10. Emmert-Streib, Frank & Dehmer, Matthias, 2009. "Fault tolerance of information processing in gene networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 541-548.
    11. Chen, Qinghua & Shi, Dinghua, 2006. "Markov chains theory for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 121-133.
    12. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    13. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    14. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    15. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    16. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    17. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    18. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    19. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    20. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0029638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.