IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0001667.html
   My bibliography  Save this article

Non-Uniform Survival Rate of Heterodimerization Links in the Evolution of the Yeast Protein-Protein Interaction Network

Author

Listed:
  • Takeshi Hase
  • Yoshihito Niimura
  • Tsuguchika Kaminuma
  • Hiroshi Tanaka

Abstract

Protein-protein interaction networks (PINs) are scale-free networks with a small-world property. In a small-world network, the average cluster coefficient ( ) is much higher than in a random network, but the average shortest path length ( ) is similar between the two networks. To understand the evolutionary mechanisms shaping the structure of PINs, simulation studies using various network growth models have been performed. It has been reported that the heterodimerization (HD) model, in which a new link is added between duplicated nodes with a uniform probability, could reproduce scale-freeness and a high . In this paper, however, we show that the HD model is unsatisfactory, because (i) to reproduce the high in the yeast PIN, a much larger number (nHI) of HD links (links between duplicated nodes) are required than the estimated number of nHI in the yeast PIN and (ii) the spatial distribution of triangles in the yeast PIN is highly skewed but the HD model cannot reproduce the skewed distribution. To resolve these discrepancies, we here propose a new model named the non-uniform heterodimerization (NHD) model. In this model, an HD link is preferentially attached between duplicated nodes when they share many common neighbors. Simulation studies demonstrated that the NHD model can successfully reproduce the high , the low nHI, and the skewed distribution of triangles in the yeast PIN. These results suggest that the survival rate of HD links is not uniform in the evolution of PINs, and that an HD link between high-degree nodes tends to be evolutionarily conservative. The non-uniform survival rate of HD links can be explained by assuming a low mutation rate for a high-degree node, and thus this model appears to be biologically plausible.

Suggested Citation

  • Takeshi Hase & Yoshihito Niimura & Tsuguchika Kaminuma & Hiroshi Tanaka, 2008. "Non-Uniform Survival Rate of Heterodimerization Links in the Evolution of the Yeast Protein-Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 3(2), pages 1-7, February.
  • Handle: RePEc:plo:pone00:0001667
    DOI: 10.1371/journal.pone.0001667
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001667
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0001667&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0001667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Uetz & Loic Giot & Gerard Cagney & Traci A. Mansfield & Richard S. Judson & James R. Knight & Daniel Lockshon & Vaibhav Narayan & Maithreyan Srinivasan & Pascale Pochart & Alia Qureshi-Emili & Y, 2000. "A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae," Nature, Nature, vol. 403(6770), pages 623-627, February.
    2. Ricard V. Solé & Romualdo Pastor-Satorras & Eric Smith & Thomas B. Kepler, 2002. "A Model Of Large-Scale Proteome Evolution," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 43-54.
    3. Andreas Wagner, 2001. "The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes," Working Papers 01-04-022, Santa Fe Institute.
    4. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    5. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    6. Jing-Dong J. Han & Nicolas Bertin & Tong Hao & Debra S. Goldberg & Gabriel F. Berriz & Lan V. Zhang & Denis Dupuy & Albertha J. M. Walhout & Michael E. Cusick & Frederick P. Roth & Marc Vidal, 2004. "Evidence for dynamically organized modularity in the yeast protein–protein interaction network," Nature, Nature, vol. 430(6995), pages 88-93, July.
    7. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xionglei He & Jianzhi Zhang, 2006. "Why Do Hubs Tend to Be Essential in Protein Networks?," PLOS Genetics, Public Library of Science, vol. 2(6), pages 1-9, June.
    2. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    3. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    4. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    5. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.
    6. Dan Braha & Yaneer Bar-Yam, 2004. "Information Flow Structure in Large-Scale Product Development Organizational Networks," Industrial Organization 0407012, University Library of Munich, Germany.
    7. Gao, Yuyang & Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Comparison of directed and weighted co-occurrence networks of six languages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 579-589.
    8. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    9. Serra, Roberto & Villani, Marco & Agostini, Luca, 2004. "On the dynamics of random Boolean networks with scale-free outgoing connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 665-673.
    10. Sun, Lanfang & Jiang, Lu & Li, Menghui & He, Dacheng, 2006. "Statistical analysis of gene regulatory networks reconstructed from gene expression data of lung cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 663-671.
    11. Fabio Caccioli & J. Doyne Farmer & Nick Foti & Daniel Rockmore, 2013. "How interbank lending amplifies overlapping portfolio contagion: A case study of the Austrian banking network," Papers 1306.3704, arXiv.org.
    12. N. Foti & S. Pauls & Daniel N. Rockmore, 2011. "Stability of the World Trade Web over Time - An Extinction Analysis," Papers 1104.4380, arXiv.org, revised May 2011.
    13. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    14. Gao, Jianbo & Hu, Jing, 2014. "Financial crisis, Omori's law, and negative entropy flow," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 79-86.
    15. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    16. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    17. Chung-Yen Yu & Yung-Ting Chuang & Hsi-Peng Kuan, 2017. "Understanding Faculty Collaboration and Productivity: A Case Study," Asian Social Science, Canadian Center of Science and Education, vol. 13(3), pages 1-1, March.
    18. Markovič, Rene & Gosak, Marko & Marhl, Marko, 2014. "Broad-scale small-world network topology induces optimal synchronization of flexible oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 14-21.
    19. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    20. Gitanjali Yadav & Suresh Babu, 2012. "NEXCADE: Perturbation Analysis for Complex Networks," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0001667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.