IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005033.html
   My bibliography  Save this article

Bipartite Community Structure of eQTLs

Author

Listed:
  • John Platig
  • Peter J Castaldi
  • Dawn DeMeo
  • John Quackenbush

Abstract

Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network “hub” SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community (“core SNPs”) and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.Author Summary: Large-scale studies have identified thousands of genetic variants associated with different phenotypes without explaining their function. Expression quantitative trait locus analysis associates the compendium of genetic variants with expression levels of individual genes, providing the opportunity to link those variants to functions. But the complexity of those associations has caused most analyses to focus solely on genetic variants immediately adjacent to the genes they may influence. We describe a method that embraces the complexity, representing all variant-gene associations as a bipartite graph. The graph contains highly modular, functional communities in which disease-associated variants emerge as those likely to perturb the structure of the network and the function of the genes in these communities.

Suggested Citation

  • John Platig & Peter J Castaldi & Dawn DeMeo & John Quackenbush, 2016. "Bipartite Community Structure of eQTLs," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-17, September.
  • Handle: RePEc:plo:pcbi00:1005033
    DOI: 10.1371/journal.pcbi.1005033
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005033
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005033&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. Stephen B. Montgomery & Micha Sammeth & Maria Gutierrez-Arcelus & Radoslaw P. Lach & Catherine Ingle & James Nisbett & Roderic Guigo & Emmanouil T. Dermitzakis, 2010. "Transcriptome genetics using second generation sequencing in a Caucasian population," Nature, Nature, vol. 464(7289), pages 773-777, April.
    3. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    4. Damien C Croteau-Chonka & Angela J Rogers & Towfique Raj & Michael J McGeachie & Weiliang Qiu & John P Ziniti & Benjamin J Stubbs & Liming Liang & Fernando D Martinez & Robert C Strunk & Robert F Lema, 2015. "Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    2. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    3. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    4. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    5. Markovič, Rene & Gosak, Marko & Marhl, Marko, 2014. "Broad-scale small-world network topology induces optimal synchronization of flexible oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 14-21.
    6. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    7. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    8. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    9. Tachimori, Yutaka & Iwanaga, Hiroaki & Tahara, Takashi, 2013. "The networks from medical knowledge and clinical practice have small-world, scale-free, and hierarchical features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6084-6089.
    10. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    11. Foti, Nicholas J. & Pauls, Scott & Rockmore, Daniel N., 2013. "Stability of the World Trade Web over time – An extinction analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1889-1910.
    12. Heath Henderson & Arnob Alam, 2022. "The structure of risk-sharing networks," Empirical Economics, Springer, vol. 62(2), pages 853-886, February.
    13. Dan Braha & Yaneer Bar-Yam, 2004. "Information Flow Structure in Large-Scale Product Development Organizational Networks," Industrial Organization 0407012, University Library of Munich, Germany.
    14. Gao, Yuyang & Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Comparison of directed and weighted co-occurrence networks of six languages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 579-589.
    15. Wang, Li-Na & Wang, Kai & Shen, Jiang-Long, 2020. "Weighted complex networks in urban public transportation: Modeling and testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    17. Mao, Liang & Yang, Yan, 2012. "Coupling infectious diseases, human preventive behavior, and networks – A conceptual framework for epidemic modeling," Social Science & Medicine, Elsevier, vol. 74(2), pages 167-175.
    18. Emmert-Streib, Frank & Dehmer, Matthias, 2009. "Fault tolerance of information processing in gene networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 541-548.
    19. Serra, Roberto & Villani, Marco & Agostini, Luca, 2004. "On the dynamics of random Boolean networks with scale-free outgoing connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 665-673.
    20. Caccioli, Fabio & Farmer, J. Doyne & Foti, Nick & Rockmore, Daniel, 2015. "Overlapping portfolios, contagion, and financial stability," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 50-63.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.