IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/01-09-047.html
   My bibliography  Save this paper

How to Reconstruct a Large Genetic Network from

Author

Listed:
  • How to Reconstruct a Large Genetic Network from n Gene Perturbations in Fewer than n2 Easy Steps

Abstract

n Gene Perturbations in Fewer than n2 Easy Steps [gzipped postscript] [postscript] [pdf] Andreas Wagner I present an algorithm to reconstruct direct regulatory interactions in gene networks from the effects of genetic perturbations on gene activity. Genomic technology has made feasible large-scale experiments that perturb the activity of many genes and then assess the effect of each individual perturbation on all other genes in an organism. Current experimental techniques can not distinguish between direct and indirect effects of a genetic perturbation. An example of an indirect effect is a gene X encoding a protein kinase, which phosphorylates and activates a transcription factor Y, which then activates transcription of gene Z. X influences the activity of gene Y directly, whereas it influences Z indirectly. To reconstruct a genetic network means to identify, for each gene and within the limits of experimental resolution, the direct effects of a perturbed gene on other genes. One can think of this as identifying the causal structure of the network. I introduce an algorithm that performs this task for networks of arbitrary size and complexity. It is based on a graph representation of a genetic network. Algorithmic complexity in both storage and time is low, less than O(n2). In practice, the algorithm can reconstruct networks of several thousand genes in mere CPU seconds on a desktop workstation.

Suggested Citation

  • How to Reconstruct a Large Genetic Network from n Gene Perturbations in Fewer than n2 Easy Steps, 2001. "How to Reconstruct a Large Genetic Network from," Working Papers 01-09-047, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:01-09-047
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Pierre Gönczy & Christophe Echeverri & Karen Oegema & Alan Coulson & Steven J. M. Jones & Richard R. Copley & John Duperon & Jeff Oegema & Michael Brehm & Etienne Cassin & Eva Hannak & Matthew Kirkham, 2000. "Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III," Nature, Nature, vol. 408(6810), pages 331-336, November.
    2. Andreas Wagner, 2001. "The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes," Working Papers 01-04-022, Santa Fe Institute.
    3. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    4. Andrew G. Fraser & Ravi S. Kamath & Peder Zipperlen & Maruxa Martinez-Campos & Marc Sohrmann & Julie Ahringer, 2000. "Functional genomic analysis of C. elegans chromosome I by systematic RNA interference," Nature, Nature, vol. 408(6810), pages 325-330, November.
    5. Andreas Wagner & David Fell, 2000. "The Small World Inside Large Metabolic Networks," Working Papers 00-07-041, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Wagner, 2001. "Estimating Coarse Gene Network Structure from Large-Scale Gene Perturbation Data," Working Papers 01-09-051, Santa Fe Institute.
    2. Marr, Carsten & Hütt, Marc-Thorsten, 2005. "Topology regulates pattern formation capacity of binary cellular automata on graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 641-662.
    3. Andreas Wagner, 2001. "The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes," Working Papers 01-04-022, Santa Fe Institute.
    4. Gao, Yuyang & Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Comparison of directed and weighted co-occurrence networks of six languages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 579-589.
    5. Serra, Roberto & Villani, Marco & Agostini, Luca, 2004. "On the dynamics of random Boolean networks with scale-free outgoing connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 665-673.
    6. Li, Wenyuan & Lin, Yongjing & Liu, Ying, 2007. "The structure of weighted small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 708-718.
    7. Andrea De Martino & Daniele De Martino & Roberto Mulet & Andrea Pagnani, 2014. "Identifying All Moiety Conservation Laws in Genome-Scale Metabolic Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-11, July.
    8. Sun, Lanfang & Jiang, Lu & Li, Menghui & He, Dacheng, 2006. "Statistical analysis of gene regulatory networks reconstructed from gene expression data of lung cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 663-671.
    9. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    10. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    11. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    12. Aqilah Amran & Lara Pigatto & Johanna Farley & Rasoul Godini & Roger Pocock & Sandeep Gopal, 2024. "The matrisome landscape controlling in vivo germ cell fates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Sgrignoli, P. & Agliari, E. & Burioni, R. & Schianchi, A., 2015. "Instability and network effects in innovative markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 260-271.
    14. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    15. Christian F A Negre & Hayato Ushijima-Mwesigwa & Susan M Mniszewski, 2020. "Detecting multiple communities using quantum annealing on the D-Wave system," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-14, February.
    16. Hope Dang & Raul Castro-Portuguez & Luis Espejo & Grant Backer & Samuel Freitas & Erica Spence & Jeremy Meyers & Karissa Shuck & Emily A. Gardea & Leah M. Chang & Jonah Balsa & Niall Thorns & Caroline, 2023. "On the benefits of the tryptophan metabolite 3-hydroxyanthranilic acid in Caenorhabditis elegans and mouse aging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    18. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    19. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    20. Semi Min & Juyong Park, 2019. "Modeling narrative structure and dynamics with networks, sentiment analysis, and topic modeling," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:01-09-047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.