IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i22p5375-5383.html
   My bibliography  Save this article

The Tsallis-complexity of a semiclassical time-evolution

Author

Listed:
  • Kowalski, A.M.
  • Plastino, A.

Abstract

An investigation is undertaken of semiclassical time-evolutions and their classical limit with the intent of getting insights into the classical–quantum frontier. We deal with a system that represents the interaction between matter and a given field, and our main research tool is the so-called q-complexity quantifier, for which two different versions are considered. The probability distribution associated with the time-evolution process is determined by recourse to the Bandt–Pompe symbolic technique [C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series, Phys. Rev. Lett. 88 (2002) 174102:1–174102:4]. The most salient details of the quantum–classical transition turn out to be described not only well, but also in a better fashion than that of previous literature.

Suggested Citation

  • Kowalski, A.M. & Plastino, A., 2012. "The Tsallis-complexity of a semiclassical time-evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5375-5383.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5375-5383
    DOI: 10.1016/j.physa.2012.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112004992
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin, M.T. & Plastino, A. & Rosso, O.A., 2006. "Generalized statistical complexity measures: Geometrical and analytical properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 439-462.
    2. Kowalski, A.M. & Plastino, A., 2009. "Bandt–Pompe–Tsallis quantifier and quantum-classical transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4061-4067.
    3. Kowalski, A.M. & Martin, M.T. & Plastino, A. & Zunino, L., 2009. "Tsallis’ deformation parameter q quantifies the classical–quantum transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 1985-1994.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aquino, Andre L.L. & Ramos, Heitor S. & Frery, Alejandro C. & Viana, Leonardo P. & Cavalcante, Tamer S.G. & Rosso, Osvaldo A., 2017. "Characterization of electric load with Information Theory quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 277-284.
    2. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    3. Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2021. "Insights from the (in)efficiency of Chinese sectoral indices during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    4. Aurelio F. Bariviera & Luciano Zunino & Osvaldo A. Rosso, 2016. "Crude Oil Market And Geopolitical Events: An Analysis Based On Information-Theory-Based Quantifiers," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 21(1), pages 41-51, May.
    5. Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Wavelet entropy and complexity–entropy curves approach for energy commodity price predictability amid the transition to alternative energy sources," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    6. Montani, Fernando & Deleglise, Emilia B. & Rosso, Osvaldo A., 2014. "Efficiency characterization of a large neuronal network: A causal information approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 58-70.
    7. F. J. Alonso & M. C. Bueso & J. M. Angulo, 2016. "Dependence Assessment Based on Generalized Relative Complexity: Application to Sampling Network Design," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 921-933, September.
    8. Katchanov, Yurij L. & Markova, Yulia V., 2022. "Dynamics of senses of new physics discourse: Co-keywords analysis," Journal of Informetrics, Elsevier, vol. 16(1).
    9. Calbet, Xavier & López-Ruiz, Ricardo, 2007. "Extremum complexity distribution of a monodimensional ideal gas out of equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 523-530.
    10. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M. & Neto, Jusie S.P., 2021. "Macroeconophysics indicator of economic efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    11. Aurelio Fernandez Bariviera & María Belén Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "The (in)visible hand in the Libor market: an information theory approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(8), pages 1-9, August.
    12. Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Libor at crossroads: Stochastic switching detection using information theory quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 172-182.
    13. Zunino, Luciano & Fernández Bariviera, Aurelio & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2012. "On the efficiency of sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4342-4349.
    14. Rosso, Osvaldo A. & Craig, Hugh & Moscato, Pablo, 2009. "Shakespeare and other English Renaissance authors as characterized by Information Theory complexity quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 916-926.
    15. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Saco, Patricia M. & Carpi, Laura C. & Figliola, Alejandra & Serrano, Eduardo & Rosso, Osvaldo A., 2010. "Entropy analysis of the dynamics of El Niño/Southern Oscillation during the Holocene," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 5022-5027.
    17. de Araujo, Fernando Henrique Antunes & Bejan, Lucian & Stosic, Borko & Stosic, Tatijana, 2020. "An analysis of Brazilian agricultural commodities using permutation – information theory quantifiers: The influence of food crisis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    19. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    20. Redelico, Francisco O. & Traversaro, Francisco & Oyarzabal, Nicolás & Vilaboa, Ivan & Rosso, Osvaldo A., 2017. "Evaluation of the status of rotary machines by time causal Information Theory quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 321-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5375-5383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.