IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v218y2018icp304-316.html
   My bibliography  Save this article

A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation

Author

Listed:
  • Khosrowpour, Ardalan
  • Jain, Rishee K.
  • Taylor, John E.
  • Peschiera, Gabriel
  • Chen, Jiayu
  • Gulbinas, Rimas

Abstract

Occupants are integral elements of a building ecosystem and their behavior can have a substantial impact on energy consumption in buildings. A wide range of energy feedback programs have been developed to make energy consumption more visible and interpretable to occupants and help them learn how to control and save energy. In this paper, we conduct a critical review of the literature related to energy feedback and identify four key methodological approaches to designing and studying energy feedback programs: experiments, analytics, surveys and simulation. Our meta-analysis reveals five research gaps and opportunities for future methodological fusion at the intersection between such approaches, including the analytics-survey, experiments-analytics, experiments-analytics-surveys, simulation-experiments and analytics-simulation interfaces. Future research at these crucial interfaces could provide the deeper understanding necessary to develop energy feedback programs that yield substantial and persistent energy savings.

Suggested Citation

  • Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
  • Handle: RePEc:eee:appene:v:218:y:2018:i:c:p:304-316
    DOI: 10.1016/j.apenergy.2018.02.148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918302861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
    2. Ian Ayres & Sophie Raseman & Alice Shih, 2013. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 29(5), pages 992-1022, October.
    3. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2014. "Feeding back about eco-feedback: How do consumers use and respond to energy monitors?," Energy Policy, Elsevier, vol. 73(C), pages 138-146.
    4. Khosrowpour, Ardalan & Xie, Yimeng & Taylor, John E. & Hong, Yili, 2016. "One size does not fit all: Establishing the need for targeted eco-feedback," Applied Energy, Elsevier, vol. 184(C), pages 523-530.
    5. Oltra, Christian & Boso, Alex & Espluga, Josep & Prades, Ana, 2013. "A qualitative study of users' engagement with real-time feedback from in-house energy consumption displays," Energy Policy, Elsevier, vol. 61(C), pages 788-792.
    6. Azar, Elie & Al Ansari, Hamad, 2017. "Framework to investigate energy conservation motivation and actions of building occupants: The case of a green campus in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 190(C), pages 563-573.
    7. Chen, Jiayu & Jain, Rishee K. & Taylor, John E., 2013. "Block Configuration Modeling: A novel simulation model to emulate building occupant peer networks and their impact on building energy consumption," Applied Energy, Elsevier, vol. 105(C), pages 358-368.
    8. Anderson, Kyle & Song, Kwonsik & Lee, SangHyun & Krupka, Erin & Lee, Hyunsoo & Park, Moonseo, 2017. "Longitudinal analysis of normative energy use feedback on dormitory occupants," Applied Energy, Elsevier, vol. 189(C), pages 623-639.
    9. Gans, Will & Alberini, Anna & Longo, Alberto, 2013. "Smart meter devices and the effect of feedback on residential electricity consumption: Evidence from a natural experiment in Northern Ireland," Energy Economics, Elsevier, vol. 36(C), pages 729-743.
    10. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    11. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    12. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2013. "Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term," Energy Policy, Elsevier, vol. 52(C), pages 126-134.
    13. Sanquist, Thomas F. & Orr, Heather & Shui, Bin & Bittner, Alvah C., 2012. "Lifestyle factors in U.S. residential electricity consumption," Energy Policy, Elsevier, vol. 42(C), pages 354-364.
    14. Taylor, Nicholas W. & Jones, Pierce H. & Kipp, M. Jennison, 2014. "Targeting utility customers to improve energy savings from conservation and efficiency programs," Applied Energy, Elsevier, vol. 115(C), pages 25-36.
    15. Simcock, Neil & MacGregor, Sherilyn & Catney, Philip & Dobson, Andrew & Ormerod, Mark & Robinson, Zoe & Ross, Simon & Royston, Sarah & Marie Hall, Sarah, 2014. "Factors influencing perceptions of domestic energy information: Content, source and process," Energy Policy, Elsevier, vol. 65(C), pages 455-464.
    16. Hunt Allcott & Todd Rogers, 2012. "The Short-Run and Long-Run Effects of Behavioral Interventions: Experimental Evidence from Energy Conservation," NBER Working Papers 18492, National Bureau of Economic Research, Inc.
    17. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    18. Delmas, Magali A. & Lessem, Neil, 2014. "Saving power to conserve your reputation? The effectiveness of private versus public information," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 353-370.
    19. Zhang, Yixiang & Wang, Zhaohua & Zhou, Guanghui, 2013. "Antecedents of employee electricity saving behavior in organizations: An empirical study based on norm activation model," Energy Policy, Elsevier, vol. 62(C), pages 1120-1127.
    20. Laurent Salzarulo, 2006. "A Continuous Opinion Dynamics Model Based on the Principle of Meta-Contrast," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-13.
    21. Ellegård, Kajsa & Palm, Jenny, 2011. "Visualizing energy consumption activities as a tool for making everyday life more sustainable," Applied Energy, Elsevier, vol. 88(5), pages 1920-1926, May.
    22. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Analytical comparison between electricity consumption and behavioral characteristics of Swedish households in rented apartments," Applied Energy, Elsevier, vol. 90(1), pages 182-188.
    23. Stenner, Karen & Frederiks, Elisha R. & Hobman, Elizabeth V. & Cook, Stephanie, 2017. "Willingness to participate in direct load control: The role of consumer distrust," Applied Energy, Elsevier, vol. 189(C), pages 76-88.
    24. Amblard, Frédéric & Deffuant, Guillaume, 2004. "The role of network topology on extremism propagation with the relative agreement opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 725-738.
    25. Sebastien Houde, Annika Todd, Anant Sudarshan, June A. Flora , and K. Carrie Armel, 2013. "Real-time Feedback and Electricity Consumption: A Field Experiment Assessing the Potential for Savings and Persistence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    26. Olsthoorn, Mark & Schleich, Joachim & Klobasa, Marian, 2015. "Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective," Energy Policy, Elsevier, vol. 76(C), pages 32-42.
    27. Vassileva, Iana & Campillo, Javier, 2014. "Increasing energy efficiency in low-income households through targeting awareness and behavioral change," Renewable Energy, Elsevier, vol. 67(C), pages 59-63.
    28. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    29. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    30. Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
    31. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    32. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    33. Vassileva, Iana & Odlare, Monica & Wallin, Fredrik & Dahlquist, Erik, 2012. "The impact of consumers’ feedback preferences on domestic electricity consumption," Applied Energy, Elsevier, vol. 93(C), pages 575-582.
    34. Gulbinas, R. & Jain, R.K. & Taylor, J.E., 2014. "BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy," Applied Energy, Elsevier, vol. 136(C), pages 1076-1084.
    35. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    36. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    37. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    38. Brounen, Dirk & Kok, Nils & Quigley, John M., 2013. "Energy literacy, awareness, and conservation behavior of residential households," Energy Economics, Elsevier, vol. 38(C), pages 42-50.
    39. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
    40. Murtagh, Niamh & Nati, Michele & Headley, William R. & Gatersleben, Birgitta & Gluhak, Alexander & Imran, Muhammad Ali & Uzzell, David, 2013. "Individual energy use and feedback in an office setting: A field trial," Energy Policy, Elsevier, vol. 62(C), pages 717-728.
    41. Delmas, Magali A. & Fischlein, Miriam & Asensio, Omar I., 2013. "Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012," Energy Policy, Elsevier, vol. 61(C), pages 729-739.
    42. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    43. Anderson, Kyle & Lee, SangHyun, 2016. "An empirically grounded model for simulating normative energy use feedback interventions," Applied Energy, Elsevier, vol. 173(C), pages 272-282.
    44. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    4. Piselli, Cristina & Pisello, Anna Laura, 2019. "Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance," Energy, Elsevier, vol. 176(C), pages 667-681.
    5. Peter Klement & Tobias Brandt & Lucas Schmeling & Antonieta Alcorta de Bronstein & Steffen Wehkamp & Fernando Andres Penaherrera Vaca & Mathias Lanezki & Patrik Schönfeldt & Alexander Hill & Nemanja K, 2022. "Local Energy Markets in Action: Smart Integration of National Markets, Distributed Energy Resources and Incentivisation to Promote Citizen Participation," Energies, MDPI, vol. 15(8), pages 1-24, April.
    6. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    7. Besagni, Giorgio & Borgarello, Marco, 2018. "The determinants of residential energy expenditure in Italy," Energy, Elsevier, vol. 165(PA), pages 369-386.
    8. Roth, Jonathan & Brown IV, Howard Alexander & Jain, Rishee K., 2020. "Harnessing smart meter data for a Multitiered Energy Management Performance Indicators (MEMPI) framework: A facility manager informed approach," Applied Energy, Elsevier, vol. 276(C).
    9. Sherif Goubran & Carmela Cucuzzella & Mohamed M. Ouf, 2021. "Eyes on the Goal! Exploring Interactive Artistic Real-Time Energy Interfaces for Target-Specific Actions in the Built Environment," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    10. Feng, Yanxiao & Duan, Qiuhua & Chen, Xi & Yakkali, Sai Santosh & Wang, Julian, 2021. "Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods," Applied Energy, Elsevier, vol. 291(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khosrowpour, Ardalan & Xie, Yimeng & Taylor, John E. & Hong, Yili, 2016. "One size does not fit all: Establishing the need for targeted eco-feedback," Applied Energy, Elsevier, vol. 184(C), pages 523-530.
    2. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    3. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Ruokamo, Enni & Meriläinen, Teemu & Karhinen, Santtu & Räihä, Jouni & Suur-Uski, Päivi & Timonen, Leila & Svento, Rauli, 2022. "The effect of information nudges on energy saving: Observations from a randomized field experiment in Finland," Energy Policy, Elsevier, vol. 161(C).
    5. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    6. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2019. "Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
    7. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    8. Chen, Victor L. & Delmas, Magali A. & Locke, Stephen L. & Singh, Amarjeet, 2017. "Information strategies for energy conservation: A field experiment in India," Energy Economics, Elsevier, vol. 68(C), pages 215-227.
    9. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    10. Rafsanjani, Hamed Nabizadeh & Ghahramani, Ali & Nabizadeh, Amir Hossein, 2020. "iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings," Applied Energy, Elsevier, vol. 266(C).
    11. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Aydin, Erdal & Brounen, Dirk & Kok, Nils, 2018. "Information provision and energy consumption: Evidence from a field experiment," Energy Economics, Elsevier, vol. 71(C), pages 403-410.
    15. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    16. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    17. Asmare, Fissha & Jaraitė, Jūratė & Kažukauskas, Andrius, 2021. "The effect of descriptive information provision on electricity consumption: Experimental evidence from Lithuania," Energy Economics, Elsevier, vol. 104(C).
    18. Brandsma, Jeroen S. & Blasch, Julia E., 2019. "One for all? – The impact of different types of energy feedback and goal setting on individuals’ motivation to conserve electricity," Energy Policy, Elsevier, vol. 135(C).
    19. Andor, Mark A. & Fels, Katja M., 2018. "Behavioral Economics and Energy Conservation – A Systematic Review of Non-price Interventions and Their Causal Effects," Ecological Economics, Elsevier, vol. 148(C), pages 178-210.
    20. Alberts, Genevieve & Gurguc, Zeynep & Koutroumpis, Pantelis & Martin, Ralf & Muûls, Mirabelle & Napp, Tamaryn, 2016. "Competition and norms: A self-defeating combination?," Energy Policy, Elsevier, vol. 96(C), pages 504-523.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:218:y:2018:i:c:p:304-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.