IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i7p1455-1463.html
   My bibliography  Save this article

Scaling of Lévy–Student processes

Author

Listed:
  • Grothe, Oliver
  • Schmidt, Rafael

Abstract

Student’s t-distributions are widely used in financial studies as heavy-tailed alternatives to normal distributions. As these distributions are not closed under convolution, there exist no Lévy processes with Student’s t-marginals at all points in time. In this article we show that a Student’s t-approximation of these marginals is still suitable, while not exact. Using this approximation, we are able to describe the scaling behavior of such Lévy–Student processes and the parameters of its marginal distributions by a simple analytical scaling law. This scaling law drastically simplifies the use of Lévy–Student processes as a general diffusion process in various interdisciplinary applications. We explicitly provide an application in the context of modelling high-frequency price returns.

Suggested Citation

  • Grothe, Oliver & Schmidt, Rafael, 2010. "Scaling of Lévy–Student processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1455-1463.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:7:p:1455-1463
    DOI: 10.1016/j.physa.2009.11.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710900973X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.11.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    2. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    3. Nicola Cufaro Petroni, 2007. "Mixtures in non stable Levy processes," Papers math/0702058, arXiv.org.
    4. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    6. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    7. Simon Hurst & Eckhard Platen & Svetlozar Rachev, 1997. "Subordinated Market Index Models: A Comparison," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 4(2), pages 97-124, May.
    8. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    9. N. H. Bingham & Rudiger Kiesel, 2002. "Semi-parametric modelling in finance: theoretical foundations," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 241-250.
    10. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    2. Till Massing, 2019. "What is the best Lévy model for stock indices? A comparative study with a view to time consistency," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(3), pages 277-344, September.
    3. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    4. Vinogradov, Dmitry V., 2010. "Cumulant approach of arbitrary truncated Levy flight," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5794-5800.
    5. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
    2. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    3. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    4. Suárez-García, Pablo & Gómez-Ullate, David, 2013. "Scaling, stability and distribution of the high-frequency returns of the Ibex35 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1409-1417.
    5. Eom, Cheoljun & Kaizoji, Taisei & Scalas, Enrico, 2019. "Fat tails in financial return distributions revisited: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    6. Stanley, H.E. & Gopikrishnan, P. & Plerou, V. & Amaral, L.A.N., 2000. "Quantifying fluctuations in economic systems by adapting methods of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 339-361.
    7. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
    8. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    9. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    10. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    11. Phoebe Koundouri & Nikolaos Kourogenis & Nikitas Pittis, 2016. "Statistical Modeling Of Stock Returns: Explanatory Or Descriptive? A Historical Survey With Some Methodological Reflections," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 149-164, February.
    12. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    13. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    14. Errunza, Vihang & Hogan, Kedreth Jr. & Mazumdar, Sumon C., 1996. "Behavior of international stock return distributions: A simple test of functional form," International Review of Economics & Finance, Elsevier, vol. 5(1), pages 51-61.
    15. Yan, Hanhuan & Han, Liyan, 2019. "Empirical distributions of stock returns: Mixed normal or kernel density?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 473-486.
    16. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    17. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    18. Farias, A. R. & Ornelas, J. R. H & Fajardo, J., 2004. "Goodness-of-Fit Test focuses on Conditional Value at Risk:An Empirical Analysis of Exchange Rates," Finance Lab Working Papers flwp_70, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    19. Pablo Su'arez-Garc'ia & David G'omez-Ullate, 2012. "Scaling, stability and distribution of the high-frequency returns of the IBEX35 index," Papers 1208.0317, arXiv.org.
    20. Phoebe Koundouri & Nikolaos Kourogenis & Nikitas Pittis, "undated". "Statistical Modeling of Stock Returns: Explanatory or Descriptive? A Historical Survey with Some Methodological Reflections," DEOS Working Papers 1331, Athens University of Economics and Business.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:7:p:1455-1463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.