IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i5p2032-2045.html
   My bibliography  Save this article

Treatment of kurtosis in financial markets

Author

Listed:
  • López Martín, María del Mar
  • García, Catalina García
  • García Pérez, José

Abstract

Since Mandelbrot (1963) [2] highlighted the fact that data on the yield of financial assets exhibit leptokurtosis, different distributions have been presented as alternatives to the normal distribution. So far little consideration has been given to the capacity that these distributions have to recover the kurtosis of the sample data. Our work aims to present distributions which, given the broad range of their kurtosis, have the capacity to perform adjustment on many occasions where other distributions fail, while also being capable of recovering the peakedness of the empirical data. Another key characteristic of these distributions is that they are defined within a bounded domain in the same way as the sample data. An empirical application of these distributions is presented within the financial field by using daily returns.

Suggested Citation

  • López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:5:p:2032-2045
    DOI: 10.1016/j.physa.2011.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111008302
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    2. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    3. Eckhard Platen & Renata Rendek, 2007. "Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices," Research Paper Series 194, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    5. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    6. Silva, A.Christian & Yakovenko, Victor M., 2003. "Comparison between the probability distribution of returns in the Heston model and empirical data for stock indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 303-310.
    7. Michael, Fredrick & Johnson, M.D., 2003. "Financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 525-534.
    8. Tucker, Alan L, 1992. "A Reexamination of Finite- and Infinite-Variance Distributions as Models of Daily Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 73-81, January.
    9. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    10. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    11. Linden, Mikael, 2001. "A Model for Stock Return Distribution," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(2), pages 159-169, April.
    12. Biró, T.S. & Rosenfeld, R., 2008. "Microscopic origin of non-Gaussian distributions of financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1603-1612.
    13. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    14. Hagerman, Robert L, 1978. "More Evidence on the Distribution of Security Returns," Journal of Finance, American Finance Association, vol. 33(4), pages 1213-1221, September.
    15. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    16. Perry, Philip R., 1983. "More Evidence on the Nature of the Distribution of Security Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(2), pages 211-221, June.
    17. Hahn, Eugene David, 2008. "Mixture densities for project management activity times: A robust approach to PERT," European Journal of Operational Research, Elsevier, vol. 188(2), pages 450-459, July.
    18. van Dorp J.R. & Kotz S., 2002. "The Standard Two-Sided Power Distribution and its Properties: With Applications in Financial Engineering," The American Statistician, American Statistical Association, vol. 56, pages 90-99, May.
    19. S. James Press, 1967. "A Compound Events Model for Security Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 317-317.
    20. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    21. Grothe, Oliver & Schmidt, Rafael, 2010. "Scaling of Lévy–Student processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1455-1463.
    22. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    23. Kirchler, Michael & Huber, Jürgen, 2009. "An exploration of commonly observed stylized facts with data from experimental asset markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1631-1658.
    24. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical distributions of Chinese stock returns at different microscopic timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 495-502.
    25. McCulloch, J. Huston, 1985. "Interest-risk sensitive deposit insurance premia : Stable ACH estimates," Journal of Banking & Finance, Elsevier, vol. 9(1), pages 137-156, March.
    26. Ball, Clifford A. & Torous, Walter N., 1983. "A Simplified Jump Process for Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(1), pages 53-65, March.
    27. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    28. Mantegna, Rosario N & Palágyi, Zoltán & Stanley, H.Eugene, 1999. "Applications of statistical mechanics to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 216-221.
    29. Kullmann, L & Töyli, J & Kertesz, J & Kanto, A & Kaski, K, 1999. "Characteristic times in stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 98-110.
    30. Cassidy, Daniel T. & Hamp, Michael J. & Ouyed, Rachid, 2010. "Pricing European options with a log Student’s t-distribution: A Gosset formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5736-5748.
    31. Linden, Mikael, 2005. "Estimating the distribution of volatility of realized stock returns and exchange rate changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 573-583.
    32. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    33. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
    34. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    35. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    36. Silva, A. Christian & Prange, Richard E. & Yakovenko, Victor M., 2004. "Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 227-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    2. Richard Arhinful & Leviticus Mensah & Halkawt Ismail Mohammed Amin & Hayford Asare Obeng, 2024. "The influence of cost of debt, cost of equity and weighted average cost of capital on dividend policy decision: evidence from non-financial companies listed on the Frankfurt Stock Exchange," Future Business Journal, Springer, vol. 10(1), pages 1-24, December.
    3. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    2. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
    3. Eom, Cheoljun & Kaizoji, Taisei & Scalas, Enrico, 2019. "Fat tails in financial return distributions revisited: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    4. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    5. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    6. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    7. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    8. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    9. Wai Mun Fong, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, John Wiley & Sons, vol. 6(2), pages 167-186.
    10. Richard Harris & C. Coskun Kucukozmen, 2001. "The empirical distribution of stock returns: evidence from an emerging European market," Applied Economics Letters, Taylor & Francis Journals, vol. 8(6), pages 367-371.
    11. Suárez-García, Pablo & Gómez-Ullate, David, 2013. "Scaling, stability and distribution of the high-frequency returns of the Ibex35 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1409-1417.
    12. Koundouri, Phoebe & Kourogenis, Nikolaos & Pittis, Nikitas & Samartzis, Panagiotis, 2015. "Factor Models as "Explanatory UniÖers" versus "Explanatory Ideals" of Empirical Regularities of Stock Returns," MPRA Paper 122254, University Library of Munich, Germany.
    13. David Edelman & Thomas Gillespie, 2000. "The Stochastically Subordinated Poisson Normal Process for Modelling Financial Assets," Annals of Operations Research, Springer, vol. 100(1), pages 133-164, December.
    14. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    15. McCulloch, J. Huston & Percy, E. Richard, 2013. "Extended Neyman smooth goodness-of-fit tests, applied to competing heavy-tailed distributions," Journal of Econometrics, Elsevier, vol. 172(2), pages 275-282.
    16. Felipe Aparicio & Javier Estrada, 2001. "Empirical distributions of stock returns: European securities markets, 1990-95," The European Journal of Finance, Taylor & Francis Journals, vol. 7(1), pages 1-21.
    17. Grothe, Oliver & Schmidt, Rafael, 2010. "Scaling of Lévy–Student processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1455-1463.
    18. Gillemot, L. & Töyli, J. & Kertesz, J. & Kaski, K., 2000. "Time-independent models of asset returns revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(1), pages 304-324.
    19. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    20. Kullmann, L & Töyli, J & Kertesz, J & Kanto, A & Kaski, K, 1999. "Characteristic times in stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 98-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:5:p:2032-2045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.