IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0702058.html
   My bibliography  Save this paper

Mixtures in non stable Levy processes

Author

Listed:
  • Nicola Cufaro Petroni

Abstract

We analyze the Levy processes produced by means of two interconnected classes of non stable, infinitely divisible distribution: the Variance Gamma and the Student laws. While the Variance Gamma family is closed under convolution, the Student one is not: this makes its time evolution more complicated. We prove that -- at least for one particular type of Student processes suggested by recent empirical results, and for integral times -- the distribution of the process is a mixture of other types of Student distributions, randomized by means of a new probability distribution. The mixture is such that along the time the asymptotic behavior of the probability density functions always coincide with that of the generating Student law. We put forward the conjecture that this can be a general feature of the Student processes. We finally analyze the Ornstein--Uhlenbeck process driven by our Levy noises and show a few simulation of it.

Suggested Citation

  • Nicola Cufaro Petroni, 2007. "Mixtures in non stable Levy processes," Papers math/0702058, arXiv.org.
  • Handle: RePEc:arx:papers:math/0702058
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0702058
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    2. Berg, C. & Vignat, C., 2010. "On the density of the sum of two independent Student t-random vectors," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1043-1055, July.
    3. Grothe, Oliver & Schmidt, Rafael, 2010. "Scaling of Lévy–Student processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1455-1463.
    4. Li, Shuaiyu & Wu, Yunpei & Cheng, Yuzhong, 2024. "Parameter estimation and random number generation for student Lévy processes," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0702058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.