IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i17p3640-3647.html
   My bibliography  Save this article

Modeling U-turn traffic flow

Author

Listed:
  • Combinido, Jay Samuel L.
  • Lim, May T.

Abstract

Median U-turns are sometimes installed to improve the traffic flow at busy intersections by eliminating left turns. Using a microscopic traffic model, we confirmed the presence of transitions from free flow to congested flow with increasing car inflow density. In addition, our proposed rules inside a U-turn curve, which accounted for safety issues and an asymmetric lane changing behavior (outer-to-inner vs. inner-to-outer lane transitions), predicted the speed distribution of cars after the U-turn curve. We found that U-turn curves installed for improving traffic flow at busy intersections produced their desired effects only when there is minimal interaction between cars.

Suggested Citation

  • Combinido, Jay Samuel L. & Lim, May T., 2010. "Modeling U-turn traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3640-3647.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:17:p:3640-3647
    DOI: 10.1016/j.physa.2010.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110003274
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Helbing, 2009. "Derivation of a fundamental diagram for urban traffic flow," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(2), pages 229-241, July.
    2. Li, Xin-Gang & Jia, Bin & Gao, Zi-You & Jiang, Rui, 2006. "A realistic two-lane cellular automata traffic model considering aggressive lane-changing behavior of fast vehicle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 479-486.
    3. Dirk Helbing & Bernardo A. Huberman, 1998. "Coherent moving states in highway traffic," Nature, Nature, vol. 396(6713), pages 738-740, December.
    4. Lee, Ha Youn & Lee, Hyun-Woo & Kim, Doochul, 2000. "Traffic states of a model highway with on-ramp," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 78-86.
    5. Nagatani, Takashi, 2000. "Phase diagrams of noisy traffic states in the presence of a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 602-613.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dailisan, Damian N. & Lim, May T., 2020. "Crossover transitions in a bus–car mixed-traffic cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    2. Dailisan, Damian N. & Lim, May T., 2019. "Vehicular traffic modeling with greedy lane-changing and inordinate waiting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 715-723.
    3. Binghong Pan & Shasha Luo & Jinfeng Ying & Yang Shao & Shangru Liu & Xiang Li & Jiaqi Lei, 2021. "Evaluation and Analysis of CFI Schemes with Different Length of Displaced Left-Turn Lanes with Entropy Method," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    4. Dailisan, Damian N. & Lim, May T., 2016. "Agent-based modeling of lane discipline in heterogeneous traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 138-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming & Ma, Jian, 2013. "Modelling of lane-changing behaviour integrating with merging effect before a city road bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5143-5153.
    2. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming, 2011. "Three-lane changing behaviour simulation using a modified optimal velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2303-2314.
    3. Qiao, Yanfeng & Xue, Yu & Cen, Bingling & Zhang, Kun & Chen, Dong & Pan, Wei, 2024. "Study on particulate emission in two-lane mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    4. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    5. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    6. Juan Francisco Sánchez-Pérez & Santiago Oviedo-Casado & Gonzalo García-Ros & Manuel Conesa & Enrique Castro, 2024. "Understanding Complex Traffic Dynamics with the Nondimensionalisation Technique," Mathematics, MDPI, vol. 12(4), pages 1-14, February.
    7. Amaro García-Suárez & José-Luis Guisado-Lizar & Fernando Diaz-del-Rio & Francisco Jiménez-Morales, 2021. "A Cellular Automata Agent-Based Hybrid Simulation Tool to Analyze the Deployment of Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    8. Hong-Ze Zhang & Rui Jiang & Mao-Bin Hu & Bin Jia, 2016. "Analytical investigation on the minimum traffic delay at a two-phase intersection considering the dynamical evolution process of queues," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(10), pages 1-12, October.
    9. Nikolaos Askitas, 2016. "Predicting Road Conditions with Internet Search," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-12, August.
    10. Yin, Yi & Shang, Pengjian & Ahn, Andrew C. & Peng, Chung-Kang, 2019. "Multiscale joint permutation entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 388-402.
    11. Mehdi Moussaïd & Elsa G Guillot & Mathieu Moreau & Jérôme Fehrenbach & Olivier Chabiron & Samuel Lemercier & Julien Pettré & Cécile Appert-Rolland & Pierre Degond & Guy Theraulaz, 2012. "Traffic Instabilities in Self-Organized Pedestrian Crowds," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-10, March.
    12. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    13. Feng, Shumin & Li, Jinyang & Ding, Ning & Nie, Cen, 2015. "Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 90-102.
    14. Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.
    15. Ranjan, Abhishek & Fosgerau, Mogens & Jenelius, Erik, 2016. "Emergence of a urban traffic macroscopic fundamental diagram," MPRA Paper 74350, University Library of Munich, Germany, revised 07 Oct 2016.
    16. Zhong, R.X. & Chen, C. & Huang, Y.P. & Sumalee, A. & Lam, W.H.K. & Xu, D.B., 2018. "Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 687-707.
    17. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    18. Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
    19. Guan, Lin & Fang, Yuwen & Li, Kongzhai & Zeng, Chunhua & Yang, Fengzao, 2018. "Transport properties of active Brownian particles in a modified energy-depot model driven by correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 716-728.
    20. Mu, Rui & Yamamoto, Toshiyuki, 2019. "Analysis of traffic flow with micro-cars with respect to safety and environmental impact," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 217-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:17:p:3640-3647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.