IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0162080.html
   My bibliography  Save this article

Predicting Road Conditions with Internet Search

Author

Listed:
  • Nikolaos Askitas

Abstract

Traffic congestion is an important problem both on an individual and on a societal level and much research has been done to explain and prevent their emergence. There are currently many systems which provide a reasonably good picture of actual road traffic by employing either fixed measurement points on highways or so called “floating car data” i.e. by using velocity and location data from roaming, networked, GPS enabled members of traffic. Some of these systems also offer forecasting of road conditions based on such historical data. To my knowledge there is as yet no system which offers advance notice on road conditions based on a signal which is guaranteed to occur in advance of these conditions and this is the novelty of this paper. Google Search intensity for the German word stau (i.e. traffic jam) peaks 2 hours ahead of the number of traffic jam reports as reported by the ADAC, a well known German automobile club and the largest of its kind in Europe. This is true both in the morning (7 am to 9 am) and in the evening (4 pm to 6 pm). The main result of this paper is then that after controlling for time-of-day and day-of-week effects we can still explain a significant additional portion of the variation of the number of traffic jam reports with Google Trends and we can thus explain well over 80% of the variation of road conditions using Google search activity. A one percent increase in Google stau searches implies a .4 percent increase of traffic jams. Our paper is a proof of concept that aggregate, timely delivered behavioural data can help fine tune modern societies and prompts for more research with better, more disaggregated data in order to also achieve practical solutions.

Suggested Citation

  • Nikolaos Askitas, 2016. "Predicting Road Conditions with Internet Search," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-12, August.
  • Handle: RePEc:plo:pone00:0162080
    DOI: 10.1371/journal.pone.0162080
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162080
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0162080&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0162080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dietrich Braess & Anna Nagurney & Tina Wakolbinger, 2005. "On a Paradox of Traffic Planning," Transportation Science, INFORMS, vol. 39(4), pages 446-450, November.
    2. Gilles Duranton & Matthew A. Turner, 2011. "The Fundamental Law of Road Congestion: Evidence from US Cities," American Economic Review, American Economic Association, vol. 101(6), pages 2616-2652, October.
    3. Maxime Lenormand & Antònia Tugores & Pere Colet & José J Ramasco, 2014. "Tweets on the Road," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    4. D. Helbing, 2009. "Derivation of a fundamental diagram for urban traffic flow," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(2), pages 229-241, July.
    5. Janet Currie & Reed Walker, 2011. "Traffic Congestion and Infant Health: Evidence from E-ZPass," American Economic Journal: Applied Economics, American Economic Association, vol. 3(1), pages 65-90, January.
    6. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    7. Nikolaos Askitas, 2015. "Google search activity data and breaking trends," IZA World of Labor, Institute of Labor Economics (IZA), pages 206-206, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamilton, Timothy L. & Wichman, Casey J., 2018. "Bicycle infrastructure and traffic congestion: Evidence from DC's Capital Bikeshare," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 72-93.
    2. Stefan Bauernschuster & Timo Hener & Helmut Rainer, 2017. "When Labor Disputes Bring Cities to a Standstill: The Impact of Public Transit Strikes on Traffic, Accidents, Air Pollution, and Health," American Economic Journal: Economic Policy, American Economic Association, vol. 9(1), pages 1-37, February.
    3. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    4. Rafael Lalive & Simon Luechinger & Armin Schmutzler, 2013. "Does Supporting Passenger Railways Reduce Road Traffic Externalities?," ECON - Working Papers 110, Department of Economics - University of Zurich.
    5. Brent, Daniel & Beland, Louis-Philippe, 2020. "Traffic congestion, transportation policies, and the performance of first responders," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    6. Kacker, Kanishka & Gupta, Ridhima & Ali , Saif, 2023. "Does Traffic Congestion pose Health Hazards? Evidence from a Highly Congested and Polluted City," EfD Discussion Paper 23-10, Environment for Development, University of Gothenburg.
    7. Tang, Cheng Keat, 2021. "The Cost of Traffic: Evidence from the London Congestion Charge," Journal of Urban Economics, Elsevier, vol. 121(C).
    8. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    9. Beland, Louis-Philippe & Brent, Daniel A., 2018. "Traffic and crime," Journal of Public Economics, Elsevier, vol. 160(C), pages 96-116.
    10. Léa Bou Sleiman, 2021. "Are car-free centers detrimental to the periphery? Evidence from the pedestrianization of the Parisian riverbank," Working Papers 2021-03, Center for Research in Economics and Statistics.
    11. Barnes, Stephen R. & Beland, Louis-Philippe & Huh, Jason & Kim, Dongwoo, 2020. "The Effect of COVID-19 Lockdown on Mobility and Traffic Accidents: Evidence from Louisiana," GLO Discussion Paper Series 616, Global Labor Organization (GLO).
    12. Mihaela, Simionescu, 2020. "Improving unemployment rate forecasts at regional level in Romania using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    13. Nicholas Rivers & Soodeh Saberian & Brandon Schaufele, 2020. "Public transit and air pollution: Evidence from Canadian transit strikes," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 496-525, May.
    14. Clifford Winston, 2013. "On the Performance of the U.S. Transportation System: Caution Ahead," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 773-824, September.
    15. Philipp Schrauth, 2022. "The Causal Effect of Cycling Infrastructure on Traffic and Accidents: Evidence from Pop-up Bike Lanes in Berlin," CEPA Discussion Papers 48, Center for Economic Policy Analysis.
    16. Viard, V. Brian & Fu, Shihe, 2015. "The effect of Beijing's driving restrictions on pollution and economic activity," Journal of Public Economics, Elsevier, vol. 125(C), pages 98-115.
    17. Bou Sleiman, Lea, 2023. "Displacing Congestion: Evidence from Paris," CEPREMAP Working Papers (Docweb) 2302, CEPREMAP.
    18. Daniel A. Brent & Austin Gross, 2018. "Dynamic road pricing and the value of time and reliability," Journal of Regional Science, Wiley Blackwell, vol. 58(2), pages 330-349, March.
    19. Lalive, Rafael & Luechinger, Simon & Schmutzler, Armin, 2018. "Does expanding regional train service reduce air pollution?," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 744-764.
    20. Deepti Goel & Sonam Gupta, 2017. "The Effect of Metro Expansions on Air Pollution in Delhi," The World Bank Economic Review, World Bank, vol. 31(1), pages 271-294.

    More about this item

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0162080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.