IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v557y2020ics0378437120304453.html
   My bibliography  Save this article

Crossover transitions in a bus–car mixed-traffic cellular automata model

Author

Listed:
  • Dailisan, Damian N.
  • Lim, May T.

Abstract

We modify the Nagel–Schreckenberg (NaSch) cellular automata model to study mixed-traffic dynamics. We focus on the interplay between passenger availability and bus-stopping constraints. Buses stop next to occupied cells of a discretized sidewalk model. By parametrizing the spacing distance between designated stops, our simulation covers the range of load-anywhere behavior to that of well-spaced stops. The interplay of passenger arrival rates and bus densities drives crossover transitions from platooning to non-platooned (free-flow and congested) states. We show that platoons can be dissolved by either decreasing the passenger arrival rate or increasing the bus density. The critical passenger arrival rate at which platoons are dissolved is an exponential function of vehicle density. We also find that at low densities, spacing stops close together induces platooned states, which reduces system speeds and increases waiting times of passengers.

Suggested Citation

  • Dailisan, Damian N. & Lim, May T., 2020. "Crossover transitions in a bus–car mixed-traffic cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
  • Handle: RePEc:eee:phsmap:v:557:y:2020:i:c:s0378437120304453
    DOI: 10.1016/j.physa.2020.124861
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120304453
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.
    2. Dailisan, Damian N. & Lim, May T., 2016. "Agent-based modeling of lane discipline in heterogeneous traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 138-147.
    3. Carlos Gershenson & Luis A Pineda, 2009. "Why Does Public Transport Not Arrive on Time? The Pervasiveness of Equal Headway Instability," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-15, October.
    4. Nagai, Ryoichi & Nagatani, Takashi & Taniguchi, Naoki, 2005. "Traffic states and jamming transitions induced by a bus in two-lane traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 548-562.
    5. Nguyen-Phuoc, Duy Q. & Currie, Graham & De Gruyter, Chris & Kim, Inhi & Young, William, 2018. "Modelling the net traffic congestion impact of bus operations in Melbourne," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 1-12.
    6. Dailisan, Damian N. & Lim, May T., 2019. "Vehicular traffic modeling with greedy lane-changing and inordinate waiting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 715-723.
    7. Nagel, Kai & Herrmann, Hans J., 1993. "Deterministic models for traffic jams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 199(2), pages 254-269.
    8. Combinido, Jay Samuel L. & Lim, May T., 2010. "Modeling U-turn traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3640-3647.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    2. Dailisan, Damian N. & Lim, May T., 2019. "Vehicular traffic modeling with greedy lane-changing and inordinate waiting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 715-723.
    3. Seyed Mohammad Hossein Moosavi & Amiruddin Ismail & Choon Wah Yuen, 2020. "Using simulation model as a tool for analyzing bus service reliability and implementing improvement strategies," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-26, May.
    4. Dailisan, Damian N. & Lim, May T., 2016. "Agent-based modeling of lane discipline in heterogeneous traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 138-147.
    5. Mei Zhang & Jia Tang & Jun Gao, 2023. "Examining the Effects of Built Environments and Individual Characteristics on Commuting Time under Spatial Heterogeneity: An Empirical Study in China Using HLM," Land, MDPI, vol. 12(8), pages 1-20, August.
    6. Ramli, Muhamad Azfar & Jayaraman, Vasundhara & Kwek, Hyen Chee & Tan, Kian Heong & Lee Kee Khoon, Gary & Monterola, Christopher, 2018. "Improved estimation of commuter waiting times using headway and commuter boarding information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 217-226.
    7. Alejandro Sánchez-Atondo & Leonel García & Julio Calderón-Ramírez & José Manuel Gutiérrez-Moreno & Alejandro Mungaray-Moctezuma, 2020. "Understanding Public Transport Ridership in Developing Countries to Promote Sustainable Urban Mobility: A Case Study of Mexicali, Mexico," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    8. Rong, Rui & Liu, Lishan & Jia, Ning & Ma, Shoufeng, 2022. "Impact analysis of actual traveling performance on bus passenger’s perception and satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 80-100.
    9. Bartolozzi, M. & Leinweber, D.B. & Thomas, A.W., 2006. "Symbiosis in the Bak–Sneppen model for biological evolution with economic applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 499-508.
    10. Xiaoyuan Wang & Junyan Han & Chenglin Bai & Huili Shi & Jinglei Zhang & Gang Wang, 2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment," Future Internet, MDPI, vol. 13(4), pages 1-17, March.
    11. Yang, Liu & Zheng, Jianlong & Cheng, Yang & Ran, Bin, 2019. "An asymmetric cellular automata model for heterogeneous traffic flow on freeways with a climbing lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Daniel Albalate & Xavier Fageda, 2019. "Congestion, Road Safety, and the Effectiveness of Public Policies in Urban Areas," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    13. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    14. Vee-Liem Saw & Lock Yue Chew, 2020. "No-boarding buses: Synchronisation for efficiency," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-34, March.
    15. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    16. Anderson, Paul & Geroliminis, Nikolas, 2020. "Dynamic lane restrictions on congested arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 224-243.
    17. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    18. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    19. Kou, Yukang & Ma, Changxi, 2023. "Dual-objective intelligent vehicle lane changing trajectory planning based on polynomial optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    20. Laila Oubahman & Szabolcs Duleba, 2022. "A Comparative Analysis of Homogenous Groups’ Preferences by Using AIP and AIJ Group AHP-PROMETHEE Model," Sustainability, MDPI, vol. 14(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:557:y:2020:i:c:s0378437120304453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.