IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v233y2014i3p739-748.html
   My bibliography  Save this article

The minimum sum representation as an index of voting power

Author

Listed:
  • Freixas, Josep
  • Kaniovski, Serguei

Abstract

We propose a new power index based on the minimum sum representation (MSR) of a weighted voting game. The MSR offers a redesign of a voting game, such that voting power as measured by the MSR index becomes proportional to voting weight. The MSR index is a coherent measure of power that is ordinally equivalent to the Banzhaf, Shapley–Shubik and Johnston indices. We provide a characterization for a bicameral meet as a weighted game or a complete game, and show that the MSR index is immune to the bicameral meet paradox. We discuss the computation of the MSR index using a linear integer program and the inverse MSR problem of designing a weighted voting game with a given distribution of power.

Suggested Citation

  • Freixas, Josep & Kaniovski, Serguei, 2014. "The minimum sum representation as an index of voting power," European Journal of Operational Research, Elsevier, vol. 233(3), pages 739-748.
  • Handle: RePEc:eee:ejores:v:233:y:2014:i:3:p:739-748
    DOI: 10.1016/j.ejor.2013.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713007467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sascha Kurz, 2012. "On minimum sum representations for weighted voting games," Annals of Operations Research, Springer, vol. 196(1), pages 361-369, July.
    2. Dan Felsenthal & Moshé Machover & William Zwicker, 1998. "The Bicameral Postulates and Indices of a Priori Voting Power," Theory and Decision, Springer, vol. 44(1), pages 83-116, January.
    3. Pulido, Manuel A. & Sánchez-Soriano, Joaquín, 2009. "On the core, the Weber set and convexity in games with a priori unions," European Journal of Operational Research, Elsevier, vol. 193(2), pages 468-475, March.
    4. Jonathan R. Strand, 1999. "State power in a multilateral context: Voting strength in the Asian development bank," International Interactions, Taylor & Francis Journals, vol. 25(3), pages 265-286, March.
    5. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    6. Tsai, Jung-Fa & Lin, Ming-Hua & Hu, Yi-Chung, 2008. "Finding multiple solutions to general integer linear programs," European Journal of Operational Research, Elsevier, vol. 184(2), pages 802-809, January.
    7. Josep Freixas & Xavier Molinero, 2009. "On the existence of a minimum integer representation for weighted voting systems," Annals of Operations Research, Springer, vol. 166(1), pages 243-260, February.
    8. José Alonso-Meijide & M. Fiestras-Janeiro, 2002. "Modification of the Banzhaf Value for Games with a Coalition Structure," Annals of Operations Research, Springer, vol. 109(1), pages 213-227, January.
    9. R J Johnston, 1978. "On the Measurement of Power: Some Reactions to Laver," Environment and Planning A, , vol. 10(8), pages 907-914, August.
    10. Jonathan R. Strand, 2003. "Measuring voting power in an international institution: the United States and the inter-American development bank," Economics of Governance, Springer, vol. 4(1), pages 19-36, April.
    11. Jane Friedman & Lynn Mcgrath & Cameron Parker, 2006. "Achievable Hierarchies In Voting Games," Theory and Decision, Springer, vol. 61(4), pages 305-318, December.
    12. Dwight Bean & Jane Friedman & Cameron Parker, 2008. "Simple Majority Achievable Hierarchies," Theory and Decision, Springer, vol. 65(4), pages 285-302, December.
    13. Freixas, Josep & Marciniak, Dorota & Pons, Montserrat, 2012. "On the ordinal equivalence of the Johnston, Banzhaf and Shapley power indices," European Journal of Operational Research, Elsevier, vol. 216(2), pages 367-375.
    14. Carreras, Francesc & Freixas, Josep, 2008. "On ordinal equivalence of power measures given by regular semivalues," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 221-234, March.
    15. Jan Telgen, 1983. "Identifying Redundant Constraints and Implicit Equalities in Systems of Linear Constraints," Management Science, INFORMS, vol. 29(10), pages 1209-1222, October.
    16. Noga Alon & Paul Edelman, 2010. "The inverse Banzhaf problem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(3), pages 371-377, March.
    17. Carreras, Francesc & Freixas, Josep, 1996. "Complete simple games," Mathematical Social Sciences, Elsevier, vol. 32(2), pages 139-155, October.
    18. Josep Freixas & Dorota Marciniak, 2009. "A minimum dimensional class of simple games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 407-414, December.
    19. Josep Freixas & Montserrat Pons, 2010. "Hierarchies achievable in simple games," Theory and Decision, Springer, vol. 68(4), pages 393-404, April.
    20. Dan S. Felsenthal & Moshé Machover, 2004. "A Priori Voting Power: What Is It All About?," Political Studies Review, Political Studies Association, vol. 2(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kong, Qianqian & Peters, Hans, 2023. "Power indices for networks, with applications to matching markets," European Journal of Operational Research, Elsevier, vol. 306(1), pages 448-456.
    2. Serguei Kaniovski & Sascha Kurz, 2018. "Representation-compatible power indices," Annals of Operations Research, Springer, vol. 264(1), pages 235-265, May.
    3. Antônio Francisco Neto, 2019. "Generating Functions of Weighted Voting Games, MacMahon’s Partition Analysis, and Clifford Algebras," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 74-101, February.
    4. Sascha Kurz, 2016. "The inverse problem for power distributions in committees," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(1), pages 65-88, June.
    5. Kurz, Sascha & Mayer, Alexander & Napel, Stefan, 2020. "Weighted committee games," European Journal of Operational Research, Elsevier, vol. 282(3), pages 972-979.
    6. Dan S. Felsenthal, 2016. "A Well-Behaved Index of a Priori P-Power for Simple N-Person Games," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 33(4), pages 367-381, December.
    7. Sascha Kurz & Nicola Maaser & Stefan Napel & Matthias Weber, 2014. "Mostly Sunny: A Forecast of Tomorrow's Power Index Research," Tinbergen Institute Discussion Papers 14-058/I, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Freixas, Josep & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Achievable hierarchies in voting games with abstention," European Journal of Operational Research, Elsevier, vol. 236(1), pages 254-260.
    2. Freixas, Josep & Marciniak, Dorota & Pons, Montserrat, 2012. "On the ordinal equivalence of the Johnston, Banzhaf and Shapley power indices," European Journal of Operational Research, Elsevier, vol. 216(2), pages 367-375.
    3. Monisankar Bishnu & Sonali Roy, 2012. "Hierarchy of players in swap robust voting games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(1), pages 11-22, January.
    4. Joseph Armel Momo Kenfack & Bertrand Tchantcho & Bill Proces Tsague, 2019. "On the ordinal equivalence of the Jonhston, Banzhaf and Shapley–Shubik power indices for voting games with abstention," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 647-671, June.
    5. Parker, Cameron, 2012. "The influence relation for ternary voting games," Games and Economic Behavior, Elsevier, vol. 75(2), pages 867-881.
    6. Serguei Kaniovski & Sascha Kurz, 2018. "Representation-compatible power indices," Annals of Operations Research, Springer, vol. 264(1), pages 235-265, May.
    7. Sascha Kurz & Stefan Napel, 2014. "Heuristic and exact solutions to the inverse power index problem for small voting bodies," Annals of Operations Research, Springer, vol. 215(1), pages 137-163, April.
    8. Josep Freixas & Marc Freixas & Sascha Kurz, 2017. "On the characterization of weighted simple games," Theory and Decision, Springer, vol. 83(4), pages 469-498, December.
    9. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    10. Josep Freixas & Montserrat Pons, 2017. "Using the Multilinear Extension to Study Some Probabilistic Power Indices," Group Decision and Negotiation, Springer, vol. 26(3), pages 437-452, May.
    11. Roland Pongou & Bertrand Tchantcho & Lawrence Diffo Lambo, 2011. "Political influence in multi-choice institutions: cyclicity, anonymity, and transitivity," Theory and Decision, Springer, vol. 70(2), pages 157-178, February.
    12. Josep Freixas & Sascha Kurz, 2014. "Enumeration of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum," Annals of Operations Research, Springer, vol. 222(1), pages 317-339, November.
    13. Freixas, Josep & Kurz, Sascha, 2014. "On minimum integer representations of weighted games," Mathematical Social Sciences, Elsevier, vol. 67(C), pages 9-22.
    14. Dan S. Felsenthal & Moshé Machover, 2015. "The measurement of a priori voting power," Chapters, in: Jac C. Heckelman & Nicholas R. Miller (ed.), Handbook of Social Choice and Voting, chapter 8, pages 117-139, Edward Elgar Publishing.
    15. Josep Freixas & Montserrat Pons, 2022. "A critical analysis on the notion of power," Annals of Operations Research, Springer, vol. 318(2), pages 911-933, November.
    16. Cheung, Wai-Shun & Ng, Tuen-Wai, 2014. "A three-dimensional voting system in Hong Kong," European Journal of Operational Research, Elsevier, vol. 236(1), pages 292-297.
    17. Bolus, Stefan, 2011. "Power indices of simple games and vector-weighted majority games by means of binary decision diagrams," European Journal of Operational Research, Elsevier, vol. 210(2), pages 258-272, April.
    18. Le Breton, Michel & Lepelley, Dominique & Macé, Antonin & Merlin, Vincent, 2017. "Le mécanisme optimal de vote au sein du conseil des représentants d’un système fédéral," L'Actualité Economique, Société Canadienne de Science Economique, vol. 93(1-2), pages 203-248, Mars-Juin.
    19. Tanaka, Masato & Matsui, Tomomi, 2022. "Pseudo polynomial size LP formulation for calculating the least core value of weighted voting games," Mathematical Social Sciences, Elsevier, vol. 115(C), pages 47-51.
    20. Chameni Nembua, C. & Miamo Wendji, C., 2016. "Ordinal equivalence of values, Pigou–Dalton transfers and inequality in TU-games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 117-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:233:y:2014:i:3:p:739-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.